William P. Ziemer

Weakly Differentiable Functions

Sobolev Spaces and Functions of Bounded Variation

Springer Science+Business Media, LLC

William P. Ziemer Department of Mathematics Indiana University Bloomington, IN 47405 USA

Editorial Board

J. H. Ewing Department of Mathematics Indiana University Bloomington, IN 47405 USA F. W. Gehring Department of Mathematics University of Michigan Ann Arbor, MI 48109 USA P. R. Halmos Department of Mathematics Santa Clara University Santa Clara, CA 95053 USA

With 1 illustration.

Mathematics Subject Classifications (1980): 46-E35, 26-B30, 31-B15

Library of Congress Cataloging-in-Publication Data Ziemer, William P. Weakly differentiable functions: Sobolev spaces and functions of bounded variation / William P. Ziemer. cm.-(Graduate texts in mathematics; 120) p. Bibliography: p. Includes index. ISBN 978-1-4612-6985-4 ISBN 978-1-4612-1015-3 (eBook) DOI 10.1007/978-1-4612-1015-3 1. Sobolev spaces. 2. Functions of bounded variation. I. Title. II. Series. OA323.Z53 1989 515'.73-dc20 89-10072

Printed on acid-free paper.

© 1989 Springer Science+Business Media New York Originally published by Springer-Verlag Berlin Heidelberg New York in 1989 Softcover reprint of the hardcover 1st edition 1989

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher written permission of the publisher (Springer-Science+Business Media, LLC), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc. in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Camera-ready copy prepared using LaT_FX.

987654321

Contents

Preface			vii
1	Pre	Preliminaries	
	1.1	Notation Inner product of vectors Support of a function Boundary of a set Distance from a point to a set Characteristic function of a set Multi-indices Partial derivative operators Function spaces—continuous, Hölder continuous,	1
	1.2	Hölder continuous derivatives Measures on \mathbb{R}^n Lebesgue measurable sets Lebesgue measurability of Borel sets	3
	1.3	Suslin sets Covering Theorems Hausdorff maximal principle General covering theorem Vitali covering theorem Covering lemma, with <i>n</i> -balls whose radii vary in Lipschitzian way Besicovitch covering lemma Besicovitch differentiation theorem	7
	1.4	Hausdorff Measure Equivalence of Hausdorff and Lebesgue measures Hausdorff dimension	15
	1.5	 L^p-Spaces Integration of a function via its distribution function Young's inequality Hölder's and Jensen's inequality 	18
	1.6	Regularization L^p -spaces and regularization	21

	1.7	Distributions	23
		Functions and measures, as distributions	
		Positive distributions	
		Distributions determined by their local behavior	
		Convolution of distributions	
		Differentiation of distributions	
	1.8	Lorentz Spaces	26
		Non-increasing rearrangement of a function	
		Elementary properties of rearranged functions	
		Lorentz spaces	
		O'Neil's inequality, for rearranged functions	
		Equivalence of L^p -norm and (p, p) -norm	
		Hardy's inequality	
		Inclusion relations of Lorentz spaces	~-
		rcises	37
	Hist	orical Notes	39
2	Sob	olev Spaces and Their Basic Properties	42
2	301	onev spaces and Then Dasic Properties	42
	2.1	Weak Derivatives	42
		Sobolev spaces	
		Absolute continuity on lines	
		L^p -norm of difference quotients	
		Truncation of Sobolev functions	
		Composition of Sobolev functions	
	2.2	Change of Variables for Sobolev Functions	49
		Rademacher's theorem	
		Bi-Lipschitzian change of variables	
	2.3	Approximation of Sobolev Functions by Smooth	
		Functions	53
		Partition of unity	
		Smooth functions are dense in $W^{k,p}$	
	2.4	Sobolev Inequalities	55
		Sobolev's inequality	
	2.5	The Rellich–Kondrachov Compactness Theorem	61
		Extension domains	
	2.6	Bessel Potentials and Capacity	64
		Riesz and Bessel kernels	
		Bessel potentials	
		Bessel capacity	
		Basic properties of Bessel capacity	
		Capacitability of Suslin sets	
		Minimax theorem and alternate formulation of	
		Bessel capacity	

xii

		Metric properties of Bessel capacity	
	2.7	The Best Constant in the Sobolev Inequality	76
		Co-area formula	
		Sobolev's inequality and isoperimetric inequality	
	2.8	Alternate Proofs of the Fundamental Inequalities	83
		Hardy–Littlewood–Wiener maximal theorem	
		Sobolev's inequality for Riesz potentials	
	2.9	Limiting Cases of the Sobolev Inequality	88
		The case $kp = n$ by infinite series	
		The best constant in the case $kp = n$	
		An L^{∞} -bound in the limiting case	
	2.10	Lorentz Spaces, A Slight Improvement	96
		Young's inequality in the context of Lorentz spaces	
		Sobolev's inequality in Lorentz spaces	
		The limiting case	100
	Exer		103
	Histo	orical Notes	108
3	Dain	ntwise Behavior of Sobolev Functions	110
ა	FOI	liwise denavior of Sobolev Functions	112
	3.1	Limits of Integral Averages of Sobolev Functions	112
		Limiting values of integral averages except for capacity null set	
	3.2	Densities of Measures	116
	3.3	Lebesgue Points for Sobolev Functions	118
	0.0	Existence of Lebesgue points except for capacity	
		null set	
		Approximate continuity	
	~ .	Fine continuity everywhere except for capacity null set	100
	3.4	L^p -Derivatives for Sobolev Functions	126
	~ -	Existence of Taylor expansions L^p	100
	3.5	Properties of L^p -Derivatives	130
		The spaces T^k , t^k , $T^{k,p}$, $t^{k,p}$	
		The implication of a function being in $T^{k,p}$ at all points of a closed set	
	3.6	An L^p -Version of the Whitney Extension Theorem	136
		Existence of a C^{∞} function comparable to the	
		distance function to a closed set	
		The Whitney extension theorem for functions in $T^{k,p}$ and $t^{k,p}$	
	3.7	An Observation on Differentiation	142
	3.8	Rademacher's Theorem in the L^p -Context	145
	0.0	A function in $T^{k,p}$ everywhere implies it is in	
		$t^{k,p}$ almost everywhere	
		•	

Contents

3.9	The Implications of Pointwise Differentiability Comparison of L^p -derivatives and distributional	146
	derivatives If $u \in t^{k,p}(x)$ for every x , and if the	
	L^p -derivatives are in L^p , then $u \in W^{k,p}$	
3.1		153
0.1	Integral averages of Sobolev functions are uniformly	100
	close to their limits on the complement of sets	
	of small capacity	
	Existence of smooth functions that agree with Sobolev	
	functions on the complement of sets of	
	small capacity	
3.1		159
	Existence of smooth functions that agree with	
	Sobolev functions on the complement of sets of	
	small capacity and are close in norm	
Exe	ercises	168
His	torical Notes	175
Po	incaré Inequalities—A Unified Approach	177
4.1	Inequalities in a General Setting	178
	An abstract version of the Poincaré inequality	
4.2	Applications to Sobolev Spaces	182
	An interpolation inequality	
4.3		185
	The representation of $(W_0^{m,p}(\Omega))^*$	
4.4	Some Measures in $(W_0^{m,p}(\Omega))^*$	188
	Poincaré inequalities derived from the abstract	
	version by identifying Lebesgue and Hausdorff	
	measure with elements in $(W^{m,p}(\Omega))^*$	
	The trace of Sobolev functions on the boundary of	
	Lipschitz domains	
	Poincaré inequalities involving the trace of	
	a Sobolev function	109
4.5	Poincaré Inequalities	193
	Inequalities involving the capacity of the set on	
10	which a function vanishes	106
4.6	Another Version of Poincaré's Inequality	196
	An inequality involving dependence on the set on which the function vanishes, not marely on its	
	which the function vanishes, not merely on its capacity	
4.7	More Measures in $(W^{m,p}(\Omega))^*$	198
4.1	Sobolev's inequality for Riesz potentials involving	130
	Soborov b mequancy for record potentials monthing	

4

		measures other than Lebesgue measure	
		Characterization of measures in $(W^{m,p}(\mathbb{R}^n))^*$	
	4.8	Other Inequalities Involving Measures in $(W^{k,p})^*$	207
		Inequalities involving the restriction of Hausdorff	
		measure to lower dimensional manifolds	
	4.9	The Case $p = 1$	209
		Inequalities involving the L^1 -norm of the gradient	
	Exe	rcises	214
	Hist	orical Notes	217
5	Functions of Bounded Variation		220
	5.1	Definitions	220
		Definition of BV functions	
		The total variation measure $ Du $	
	5.2	Elementary Properties of BV Functions	222
		Lower semicontinuity of the total variation measure	
		A condition ensuring continuity of the total	
		variation measure	
	5.3	Regularization of BV Functions	224
		Regularization does not increase the BV norm	
		Approximation of BV functions by smooth functions	
		Compactness in L^1 of the unit ball in BV	
	5.4	Sets of Finite Perimeter	228
		Definition of sets of finite perimeter	
		The perimeter of domains with smooth boundaries	
		Isoperimetric and relative isoperimetric inequality for	
		sets of finite perimeter	
	5.5	The Generalized Exterior Normal	233
		A preliminary version of the Gauss–Green theorem	
		Density results at points of the reduced boundary	
	5.6	Tangential Properties of the Reduced Boundary and the	
		Measure-Theoretic Normal	237
		Blow-up at a point of the reduced boundary	
		The measure-theoretic normal	
		The reduced boundary is contained in the	
		measure-theoretic boundary	
		A lower bound for the density of $\ D\chi_E\ $	
		Hausdorff measure restricted to the reduced boundary	
		is bounded above by $\ D\chi_E\ $	
	5.7	Rectifiability of the Reduced Boundary	243
	- / •	Countably $(n-1)$ -rectifiable sets	
		Countable $(n-1)$ -rectifiability of the	
		measure-theoretic boundary	

	F 0		0.4.0
	5.8	The Gauss-Green Theorem	246
		The equivalence of the restriction of Hausdorff	
		measure to the measure-theoretic boundary	
		and $\ D\chi_E\ $	
		The Gauss–Green theorem for sets of finite perimeter	
	5.9	Pointwise Behavior of BV Functions	249
		Upper and lower approximate limits	
		The Boxing inequality	
		The set of approximate jump discontinuities	
	5.10	The Trace of a BV Function	255
		The bounded extension of BV functions	
		Trace of a BV function defined in terms of the	
		upper and lower approximate limits of the	
		extended function	
		The integrability of the trace over the	
		measure-theoretic boundary	
	5.11	Sobolev-Type Inequalities for BV Functions	260
		Inequalities involving elements in $(BV(\Omega))^*$	
	5.12	Inequalities Involving Capacity	262
		Characterization of measure in $(BV(\Omega))^*$	
		Poincaré inequality for BV functions	
	5.13	Generalizations to the Case $p > 1$	270
		Trace Defined in Terms of Integral Averages	272
	Exer		277
		orical Notes	280
	11000		200
Ri	hling	raphy	283
	01105	Tupity	200
Lis	st of	Symbols	297
1.10	0.01	0,1110,010	231
Ind	lex		303
TIL	IUA		000