Serge Lang

Elliptic Functions

Second Edition

Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Serge Lang Department of Mathematics Yale University New Haven, CT 06520 U.S.A.

Editorial Board

F. W. Gehring Department of Mathematics University of Michigan Ann Arbor, MI 48109 U.S.A. P. R. Halmos Department of Mathematics Santa Clara University Santa Clara, CA 95053 U.S.A.

AMS Classifications: 10D05, 12B25

Library of Congress Cataloging in Publication Data Lang, Serge Elliptic functions. (Graduate texts in mathematics; 112) Bibliography: p. 1. Functions, Elliptic. I. Title. QA343.L35 1987 515.9'83 87-4514

The first edition of this book was published by Addison-Wesley Publishing Company, Inc., Reading, MA, in 1973.

© 1987 by Springer-Verlag New York Inc.

Softcover reprint of the hardcover 1st edition 1987

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York, New York 10010, U.S.A.), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

987654321

ISBN-13: 978-1-4612-9142-8 e-ISBN-13: 978-1-4612-4752-4 DOI: 10.1007/978-1-4612-4752-4

Contents

PART ONE GENERAL THEORY

Chapter	1	Elliptic Functions							
	1	The Liouville Theorems							5
	2	The Weierstrass Function		•					7
	3	The Addition Theorem							12
	4	Isomorphism Classes of Elliptic Curves							14
	5	Endomorphisms and Automorphisms .	•	•	•	•	•	•	19
Chapter	2	Homomorphisms							
	1	Points of Finite Order							23
	2	Isogenies						•	25
	3	The Involution	•	•	•	•	•	•	28
Chapter	3	The Modular Function							
	1	The Modular Group							29
	2	Automorphic Functions of Degree $2k$.							32
	3	The Modular Function j	•	•	•	•	•	•	39
Chapter	4	Fourier Expansions							
	1	Expansion for $G_{i}, g_{2}, g_{3}, \Delta$ and i .							43
	2	Expansion for the Weierstrass Function						•	45
	3	Bernoulli Numbers							48
	-							-	

Chapter	5	The Modular Equation
	1	Integral Matrices with Positive Determinant
	2	The Modular Equation
	3	Relations with Isogenies
Chapter	6	Higher Levels
	1	Congruence Subgroups 61
	2	The Field of Modular Functions Over C
	3	The Field of Modular Functions Over Q
	4	Subfields of the Modular Function Field
Chapter	7	Automorphisms of the Modular Function Field
	1	Rational Adeles of GL_2
	2	Operation of the Rational Adeles on the Modular Function
		Field
	3	The Shimura Exact Sequence
		ELLIPTIC CURVES WITH SINGULAR INVARIANTS
Chapter	8	Results from Algebraic Number Theory
	1	Lattices in Quadratic Fields
	2	Completions
	3	The Decomposition Group and Frobenius Automorphism . 101
	4	Summary of Class Field Theory
Chapter	9	Reduction of Elliptic Curves
	1	Non-degenerate Reduction, General Case
	2	Reduction of Homomorphisms
	3	Coverings of Level N
	4	Reduction of Differential Forms
Chapter	10	Complex Multiplication
	1	Generation of Class Fields, Deuring's Approach 123
	2	Idelic Formulation for Arbitrary Lattices
	3	Generation of Class Fields by Singular Values of Modular
		Functions
	4	The Frobenius Endomorphism
	-	

Chapter 11	Shimura's Reciprocity Law
1 2	Relation Between Generic and Special Extensions149Application to Quotients of Modular Forms153
Chapter 12	The Function $\Delta(\alpha \tau)/\Delta(\tau)$
1	Behavior Under the Artin Automorphism
2	Prime Factorization of its Values
3	Analytic Proof for the Congruence Relation of j 168
Chapter 13	The ℓ -adic and p-adic Representations of Deuring
1	The ℓ -adic Spaces
2	Representations in Characteristic p
3	Representations and Isogenies
4	Reduction of the Ring of Endomorphisms
5	The Deuring Lifting Theorem
Chapter 14	Ihara's Theory
1	Deuring Representatives
2	The Generic Situation
3	Special Situations
PART THI	REE ELLIPTIC CURVES WITH NON-INTEGRAL INVARIANT
Chapter 15	The Tate Parametrization
1	Elliptic Curves with Non-integral Invariants
2	Elliptic Curves Over a Complete Local Ring 202
Chapter 16	The Isogeny Theorems
1	The Galois <i>p</i> -adic Representations
2	Results of Kummer Theory
3	The Local Isogeny Theorems
4	Supersingular Reduction
5	The Global Isogeny Theorems
Chapter 17	Division Points Over Number Fields
1	A Theorem of Shafarevič
2	The Irreducibility Theorem

ix

3	The Horizontal Galois Group					226
4	The Vertical Galois Group .		•			229
5	End of the Proof					231

PART FOUR THETA FUNCTIONS AND KRONECKER LIMIT FORMULA

Chapter 18 Product Expansions

1	The Sigma and Zeta Function							239
	Appendix The Skew Symmetric Pairing							243
2	A Normalization and the q-product for	the	σ-fι	inct	tion			246
3	q-expansions Again						•	248
4	The <i>q</i> -product for Δ							249
5	The Eta Function of Dedekind							252
6	Modular Functions of Level 2	•	•	٠	•	•	•	254
Chapter 19	The Siegel Functions and Klein Forms							
1	The Klein Forms							259
2	The Siegel Functions							262
3	Special Values of the Siegel Functions	•	•	•	•	•	•	264
Chapter 20	The Kronecker Limit Formulas							
1	The Poisson Summation Formula							267
2	Examples							268
3	The Function $K_s(x)$							270
4	The Kronecker First Limit Formula .							273
5	The Kronecker Second Limit Formula	•	•	•	•	•	•	276
Chapter 21	The First Limit Formula and L-series							
1	Relation with <i>L</i> -series							279
2	The Frobenius Determinant							282
3	Application to the <i>L</i> -series	•	•	•	•	٠,	•	284
Chapter 22	The Second Limit Formula and L-series							
1	Gauss Sums							287
2	An Expression for the <i>L</i> -series	•	•	•	•	•	•	289

APPENDICES ELLIPTIC CURVES IN CHARACTERISTIC p

Appendix 1	Algebraic Formulas in Arbitrary Characteristic
	By J. TATE
1	Generalized Weierstrass Form
2	Canonical Forms
3	Expansion Near O; The Formal Group
Appendix 2	The Trace of Frobenius and the Differential of First Kind
1	The Trace of Frobenius
2	Duality
3	The Tate Trace
4	The Cartier Operator
5	The Hasse Invariant
Bibliography	
Index	

.