Many solutions to linear plate problems are discussed in Chapter 4. Comparisons to published results are carried out in order to verify the computer algorithms. An explanation of shear locking is included.

Solutions of plates undergoing large displacements and moderate rotations are contained in Chapter 5 and the solution algorithm is presented. Results from the modified von Karman type strain displacement relations are compared to linear assumptions.

Chapter 6 is devoted to linear cylindrical shell applications, including many well-known test cases. Verification of the shell element is made. Thick laminated pressure vessels are studied.

The solution to several nonlinear cylindrical shell panel problems is reviewed in Chapter 7. Deep laminated panels undergoing large rotations are studied. The methods of solution are the displacement and load control Newton-Raphson technique and the constant arc length method.

Both cylindrical shell and plate bifurcation solutions are provided in Chapter 8.

A. N. PALAZOTTO S. T. DENNIS

TABLE OF CONTENTS

Preface

- 1 Chapter 1. Introduction
 - 1.1 Shell Theories
 - 1.2 Finite Element Shell Applications
 - 1.3 Solution Algorithms
 - 1.4 Concluding Remarks
 References

21 Chapter 2. Theoretical Considerations

- 2.1 General Relationships
 - Strain Displacement in Curvilinear Coordinates Surface/Shell Geometric Definitions
 - Virtual Work, Generalized Hooke's Law, and Potential Energy
- 2.2 Basic Assumptions and Approach
- 2.3 Kinematics
- 2.4 Shell Strain Displacement Relations
- 2.5 Shell Potential Energy
- 2.6 Concluding Remarks
 - Appendix A: Strain Displacement for Arbitrary Shell Geometry
 - Appendix B: Von Karman Plate and Donnell Shell Strain Displacement Relations References

9 Chapter 3. Finite Element Solution

- 3.1 Element-Independent Formulation
- 3.2 28 and 36-Degree-of-Freedom Curved Elements
- 3.3 Coupling Characteristics

Appendix C: Finite Element Strain Definition Arrays References

103 Chapter 4. Linear Plate Solutions

- 4.1 Linear Solution Algorithm
- 4.2 Flat Plate in Cylindrical Bending
 Isotropic Plate Strip
 Orthotropic Plate Strip
 Laminated Plate Strips
- 4.3 Rectangular Flat-Plate Bending
 Rectangular Isotropic Plates
 Rectangular Orthotropic Plates
 Rectangular Laminated Plates
- 4.4 Shear Locking
- 4.5 Patch Test
- 4.6 Concluding Remarks
 References

131 Chapter 5. Geometrically Nonlinear Plate Solutions

- 5.1 Newton-Raphson Nonlinear Solution Algorithm
- 5.2 Isotropic Plate Bending
- 5.3 Laminated Plate Bending
- 5.4 Plate Parameter Study
- 5.5 Concluding Remarks
 References

155 Chapter 6. Linear Cylindrical Shell Solutions

- 6.1 Cylindrical Shell in Cylindrical Bending
 Isotropic Cylindrical Shell Strip
 Laminated Cylindrical Shell Strip
- 6.2 Isotropic Cylindrical Shells
 Clamped Shallow Shell
 Barrell Vault
 Pinched Cylinder
- 6.3 Cylindrical Pressure Vessels
 Thin Isotropic Pressure Vessel
 Thick Isotropic, Orthotropic, and Laminated
 Pressure Vessels
 Countershear Point
 Thick-Disk Comparison
- 6.4 Concluding Remarks
 References

195 Chapter 7. Geometrically Nonlinear Cylindrical Shell Solutions

- 7.1 Isotropic Cylindrical Shells
- 7.2 Isotropic Deep Arches

- 7.3 Modified Riks-Wempner Constant Arc Length Algorithm
- 7.4 Laminated Cylindrical Deep Panels
- 7.5 Laminated Shell with a Cutout
- 7.6 Concluding Remarks
 References

233 Chapter 8. Bifurcation Solutions

- 8.1 Bifurcation Algorithm
- 8.2 Euler Column Buckling
- 8.3 Isotropic Flat-Plate Bifurcation
- 8.4 Laminated Flat-Plate Bifurcation
- 8.5 Cylindrical Shell Bifurcation
- 8.6 Concluding Remarks
 References

249 Subject Index