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PART I: Mechanics of Rigid Bodies

Chapter 1

Properties of Forces and Force Systems

COMPONENTS OF A FORCE

The components (or scalar components) of a force F in the x and y directions are denoted by F,
and F,, respectively (Fig. 1-1), and are

F, =|F|cos F,=|F|sin 6 (1.1)

where the vertical bars denote the magnitude of the vector F.
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VECTOR ADDITION

Two vectors A and B may be added by taking A and B as adjacent sides of a parallelogram, as
indicated in Fig. 1-2. The vector sum (or resultant) of A and B is then the vector from the origin of A
and B along the diagonal to the opposite corner. This defines the parallelogram rule for vector addition.
We sometimes refer to A and B of Fig. 1-2 as vector components of A + B.

DOT PRODUCT

The dot product (or scalar product) of two vectors A and B is the product of the magnitudes of the
two vectors multiplied by the cosine of the acute angle « between them, as shown in Fig. 1-3:

,: A-B=|A||B|cosa C LD

It is frequently convenient to work with unit vectors (i.e., vectors of unit length) directed along the
X, y, and z axes, as shown in Fig. 1-4. These are denoted i, j, and k, respectively. From (1.2) we obviously
have
i*'i=jrj=k k=1

» 13
i*‘j=j-k=i‘k=0 U

Figure 1-5 shows the extension of these ideas to three-dimensional space.
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