To Betty, Martha, Marybeth, Dave, Tom, Jeff, Steven, Brian, Sarah, Scott, Beth, Mike, Carley, Lauren, and Katie for all the time I spent away from them while preparing this third edition. ## CONTENTS | Pre | eface | xvii | |----------------------------------|--|----------------------------| | Ch | apter 1 Introduction | 1 | | 1-2
1-3
1-4
1-5
1-6 | Cost of Corrosion Corrosion Engineering Definition of Corrosion Environments Corrosion Damage Classification of Corrosion Future Outlook | 1
3
4
5
5
9 | | 2-1 | Introduction Corrosion Rate Expressions | 12
12
13 | | Elect | trochemical Aspects | 14 | | 2-5 | assivity | 14
19
21 | | | ronmental Effects | 23 | | 2-6
2-7
2-8
2-9
2-10 | Effects of Corrosive Concentration | 23
24
26
26
27 | | | | | | CONTENTS | |----------| | | | Met | allurgical and Other Aspects | 2 | |--------------------|--|------| | 2-11
2-12 | Metallic Properties Economic Considerations | 2: | | | Importance of Inspection | 3. | | | New Instrumentation | 3 | | | Study Sequence | 38 | | Ch | apter 3 Eight Forms of Corrosion | 39 | | Unif | orm Attack | 39 | | Galv | anic or Two-Metal Corrosion | 41 | | 3-1 | EMF and Galvanic Series | 41 | | 3-2 | Environmental Effects | 45 | | | Distance Effect | 46 | | | Area Effect | 46 | | | Prevention | 48 | | 3-6 | Beneficial Applications | 50 | | Crev | ice Corrosion | 51 | | 3-7 | Environmental Factors | 51 | | 3-8 | | 53 | | | Combating Crevice Corrosion | 59 | | 3-10 | Filiform Corrosion | 59 | | Pitti | ng | 63 | | 3-11 | Pit Shape and Growth | 64 | | 3-12 | Autocatalytic Nature of Pitting | 66 | | | Solution Composition | 69 | | | Velocity | 70 | | 3-15 | Metallurgical Variables | 71 | | | Evaluation of Pitting Damage | . 72 | | 3-17 | Prevention | 73 | | Inter | granular Corrosion | 73 | | 3-18 | Austenitic Stainless Steels | 74 | | | Weld Decay | 76 | | | Control for Austenitic Stainless Steels | 78 | | 3-21 | THE PARTY OF P | 83 | | 3-22 | Intergranular Corrosion of Other Alloys | 85 | | Selective Leaching | | | | 3-23 | Dezincification: Characteristics | 86 | | 3-24 | Dezincification: Mechanism | 88 | | | | CONTENTS ix | |----------|---|-------------| | 3-25 | Dezincification: Prevention | 0.0 | | 3-26 | Graphitization | 88 | | 3-27 | Other Alloy Systems | 89
89 | | 3-28 | High Temperatures | 90 | | Eros | sion Corrosion | 91 | | 3-29 | Surface Films | | | - | Velocity | 92 | | | Turbulence | 95 | | | Impingement | 97 | | 3-33 | Galvanic Effect | 98 | | 3-34 | Nature of Metal or Alloy | 100
100 | | 3-35 | Combating Erosion Corrosion | 100 | | 3-36 | Cavitation Damage | 102 | | 3-37 | | 105 | | Stron | ss Corrosion | 103 | | | | 109 | | 3-38 | Crack Morphology | 112 | | 3-39 | Stress Effects | 114 | | 3-40 | Time to Cracking | 116 | | | Environmental Factors Metallurgical Factors | 117 | | 3-43 | Mechanism | 123 | | 3-44 | | 124 | | | Classification of Mechanisms | 126 | | 3-46 | Methods of Prevention | 136 | | 3-47 | Corrosion Fatigue | 138 | | | Epones | 139 | | | ogen Damage | 143 | | | Characteristics | 143 | | 3-49 | Environmental Factors | 143 | | 3-50 | Hydrogen Blistering | 144 | | 3-51 | | 145 | | 3-52 | Prevention | 149 | | | Fracture Mechanics | 151 | | Cha | pter 4 Corrosion Testing | 153 | | 1-1 | Introduction | | | 1-2 | Classification | 153 | | 1-3 | Purpose | 153 | | 1-4 | Materials and Specimens | 155 | | 1-5 | Surface Preparation | 156 | | -6
-7 | Measuring and Weighing | 157 | | -8 | Exposure Techniques | 158 | | -8 | Duration | 158 | | , | Planned-Interval Tests | 162
164 | | | | 104 | ## X CONTENTS | | | | CONTENTS | |--|-----|--|----------| | 4-10 Aeration | 165 | 5-15 Tin and Tin Plate | | | 4-11 Cleaning Specimens After Exposure | 167 | 5-16 Cadmium | 24 | | 4-12 Temperature | 169 | | 24 | | 4-13 Standard Expressions for Corrosion Rate | 171 | | 24. | | 4-14 Galvanic Corrosion | 174 | 5-18 Refractory Metals 5-19 Noble Metals | 24 | | 4-15 High Temperatures and Pressures | 174 | | 25 | | 4-16 Erosion Corrosion | 176 | 0.0000 | 253 | | 4-17 Crevice Corrosion | 181 | 5-21 Metallic Composites | 250 | | 4-18 Intergranular Corrosion | 184 | Name de Bita | | | 4-19 Huey Test for Stainless Steels | 184 | Nonmetallics | 259 | | 4-20 Streicher Test for Stainless Steels | 185 | 5-22 Natural and Synthetic Rubbers | 250 | | 4-21 Warren Test | 186 | 5-23 Other Elastomers | 259 | | 4-22 Pitting | 186 | 5-24 Plastics | 263 | | 4-23 Stress Corrosion | 187 | | 263 | | 4-24 NACE Test Methods | 189 | Thermoplastics | 266 | | 4-25 Slow-Strain-Rate Tests | 191 | Do - | 265 | | 4-26 Linear Polarization | 192 | 5-25 Fluorocarbons | 265 | | 4-27 AC Impedance | 194 | 5-26 Acrylics | 269 | | 4-28 Small-Amplitude Cyclic Voltammetry | 198 | 5-27 Nylon | 269 | | 4-29 Electronic Instrumentation | 200 | 5-28 Chlorinated Polyether | 269 | | 4-30 In Vivo Corrosion | 202 | 5-29 Polyethylenes | 269 | | 4-31 Paint Tests | 204 | 5-30 Polypropylene | 270 | | 4-32 Seawater Tests | 206 | 5-31 Polystyrene | 270 | | 4-33 Miscellaneous Tests of Metals | 206 | 5-32 Rigid Polyvinyl Chloride (PVC) | 270 | | 4-34 Corrosion of Plastics and Elastomers | 207 | 5-33 Vinyls | 270 | | 4-34 Corrosion of Plastics and Elastomers 4-35 Presenting and Summarizing Data | | 5-34 Other Thermoplastics | 270 | | | 215 | OR Preso | 2/1 | | 4-36 Nomograph for Corrosion Rates | 216 | Thermosetters | 271 | | 4-37 Interpretation of Results | 218 | 5.25 English | 2/1 | | | | 5-35 Epoxies | 271 | | Chapter 5 Materials | 219 | 5-36 Phenolics
5-37 Polyesters | 271 | | | 219 | - 0.) 00.013 | 271 | | 5-1 Mechanical Properties | 219 | 5-38 Silicones
5-39 Ureas | 272 | | 5-2 Other Properties | 220 | | 272 | | | | 5-40 Laminates and Reinforced Plastics | 272 | | Metals and Alloys | 220 | Other Nonmetallics | | | 5-3 Cast Irons | 220 | | 274 | | | | 5-41 Ceramics | 274 | | 5-4 High-Silicon Cast Irons | 222 | 5-42 Carbon and Graphite | 276 | | 5-5 Other Alloy Cast Irons
5-6 Carbon Steels and Irons | 224 | 5-43 Wood | 277 | | | 224 | | 211 | | 5-7 Low-Alloy Steels | 225 | | | | 5-8 Stainless Steels | 226 | Chapter 6 Corrosion Prevention | | | 5-9 Aluminum and Its Alloys | 236 | Corrosion Prevention | 278 | | 5-10 Magnesium and Its Alloys | 239 | Materials Selection | 2/0 | | 5-11 Lead and Its Alloys | 239 | | 278 | | 5-12 Copper and Its Alloys | 240 | 6-1 Metals and Alloys | 210 | | 5-13 Nickel and Its Alloys | 243 | 0-2 Metal Purification | 278 | | 5-14 Zinc and Its Alloys | 244 | 6-3 Nonmetalics | 280 | | | | | 280 | | Alteraction of Eurironment | xii CONTENTS | | | CONTENTS xiii | |--|--|-----|--|---------------| | Changing Mediums | Alteration of Environment | 281 | Hydrochloric Acid | *** | | Design | 6-4 Changing Mediums | 281 | | 346 | | Posign P | | | 7-21 Class I Metals and Alloys | 347 | | Section | | 202 | 7-22 Class 2 Metals and Alloys | | | August Section Secti | Design | 202 | 7-23 Class 3 Metals and Alloys | 350 | | Design Rules 202 7-26 Hydrogen Chloride and Chlorine 332 332 333 333 334 334 335 | 6.6 Wall This | | 7-24 Aeration and Oxidizing Agents | 350 | | Cathodic and Anodic Protection | | 292 | 7-25 Nonmetallic Materials | 351 | | Cathodic Protection | 0-7 Design Rules | 292 | 7-20 Hydrogen Chloride and Chlorine | 352 | | 2-32 Anodic Protection 300 7-28 Anolydrous Hydrofiluoric Acid 353 353 356 357 | Cathodic and Anodic Protection | 294 | Hydrofluoric Acid | 352 | | Anodic Protection 300 7-28 Anhydrous Hydrofluoric Acid 356 | 6-8 Cathodic Protection | 204 | 7-27 Aqueous Hydrofluoric Acid | 2.50 | | Contains | 6-9 Anodic Protection | | 7-28 Anhydrous Hydrofluoric Acid | | | Coatings | 6-10 Comparison of Anodic and Cathodic Protection | | 7-29 Fluorine | | | Metallic and Other Inorganic Coatings | | 302 | | 357 | | | Coatings | 304 | Phosphoric Acid | 357 | | | 6-11 Metallic and Other Inorganic Coatings | 304 | 7-30 Materials of Construction | 2.57 | | Chapter 8 Other Environments 360 | 6-12 Organic Coatings | | | | | Part | 6-13 Corrosion Control Standards | | | 339 | | Suffire | 6-14 Failure Analysis | | Chart 0 01 - | | | Sulfurible Acids 317 8-1 Organic Acids 360 Sulfurible Acids 317 8-3 Atmospheric Corrosion 369 Sulfurible Acids 317 8-3 Atmospheric Corrosion 372 7-1 Isteel 319 8-5 Fresh Water 373 7-2 Cast Iron 320 8-6 High-Purity Water 381 7-3 Chemical Lead 321 8-7 Soils 383 7-4 High-Silicon Cast Iron 322 8-8 Acrospace 383 7-5 Durimet 20 324 8-10 Biological Corrosion 384 7-5 Durimet 20 324 8-10 Biological Corrosion 384 7-7 Combined Iscorrosion Chart 326 8-11 Human Body 392 7-7 Compositional Statilises Steels 327 8-12 Corrosion of Metals by Halogens 402 7-10 Coter Councitional Statilises Steels 8-14 Nuclear Waste Isolation 405 < | | | Chapter 8 Other Environments | 360 | | Sulfuric Acid 317 | Chapter 7 Mineral Acids | 317 | 8-1 Organic Acids | | | Steel | | | | | | Steel | Sulfuric Acid | 317 | 8-3 Atmospheric Corrosion | | | Cast Iron | 7-1 Steel | | 8-4 Seawater | | | Chemical Lead S21 | 2 2 2222 | | | | | High-Silicon Cast Iron 322 8-8 8-8 Aerospace 384 | Section 2011 Annual Control of the C | | Bit a ditty vv atter | | | 7-5 Durimet 20 323 8-9 Petroleum Industry 384 7-6 Nickel-Molybdenum and Nickel-Molybdenum-Chromium Alloys 324 8-10 Biological Corrosion 386 7-7 Combined Iscorrosion Chart 326 8-11 Human Body 392 7-8 Conventional Stainless Steels 327 8-12 Corrosion of Metals by Halogens 402 7-9 Monel, Nickel, Inconel, and Ni-Resist 327 8-13 Corrosion of Metals by Halogens 402 7-10 Coper and Its Alloys 328 8-14 Nuclear Waste Isolation 405 7-11 Other Metals and Alloys 328 8-15 Liquid Metals and Fused Salts 405 7-12 Summary Chart 329 8-16 Solar Energy 413 7-13 Equipment at Ambient Temperatures 334 8-18 Sewage and Plant-Waste Treatment 414 7-15 Numerallics 336 8-19 Pollution Control 416 Nitric Acid 337 8-21 Dew Point Corrosion 434 | | | 2010 | | | Nickel-Molybdenum and Nickel-Molybdenum-Chromium Alloys 324 8-10 Biological Corrosion 336 324 8-10 Biological Corrosion 336 332 | | | | | | Combined Iscorrosion Chart 326 | | | 8-9 Petroleum Industry | | | Conventional Stainless Steels 327 328 32 | 7-7 Combined Iscorrosion Chart | | 8-10 Biological Corrosion | | | Monel, Nickel, Inconel, and Ni-Resist 327 8-13 Corrosion of Metals by Halogens 402 | | | 6-11 Human Body | | | Copper and Its Alloys 328 | | | 8-12 Corrosion of Metals by Halogens | | | 7-11 Other Metals and Alloys 328 8-15 Summary Chart 329 8-16 Solar Energy 407 | 7-10 Copper and Its Alloys | | 8-14 Nuclear Automobiles | | | T-12 Summary Chart 329 8-16 Solar Energy 407 | | | 8-15 Liquid Maste Isolation | | | Sulfuric Acid Plant Equipment 334 8-17 Geothermal Energy 413 | | | 8-16 Solor Francis and Fused Salts | | | 7-14 Sulfuric Acid Plant Equipment 7-15 Nonmetallics 334 8-18 Sewage and Plant-Waste Treatment 7-15 Nonmetallics 8-19 Pollution Control 8-20 Coal Conversion Nitric Acid 7-16 Stainless Steels 7-17 Class 1 Materials 7-18 Class 2 Materials 7-18 Class 2 Materials 7-19 Class 3 Materials 7-19 Class 3 Materials 7-10 Mixed Acids 8-18 Sewage and Plant-Waste Treatment 9-10 Pulp and Paper Industry 1427 15 Dew Point Corrosion 15 Electronic Under Insulation 16 Electronic Equipment 17 Electronic Equipment 18 Electronic Equipment 19 10 Elec | | | 8-17 Geothermal F | | | T-15 Nonmetallics 336 8-19 Pollution Control 416 | 7-14 Sulfuric Acid Plant Equipment | | 8-18 Sewage and Discovery | | | Nitric Acid 337 8-20 Coal Conversion 416 7-16 Stainless Steels 337 8-22 Dew Point Corrosion 434 7-17 Class 1 Materials 338 8-24 Corrosion Under Insulation 439 7-18 Class 2 Materials 342 8-25 Liquid-Metal Embrittlement or Cracking 440 7-19 Class 3 Materials 345 8-26 Hydrogen Peroxide 441 7-20 Mixed Acids 346 8-27 Rebar Corrosion 443 | 7-15 Nonmetallics | | 8-19 Pollution County | | | Nitric Acid 337 8-21 Dew Point Corrosion Pulp and Paper Industry Dew Point Corrosion 427 7-16 Stainless Steels 337 8-22 Dew Point Corrosion 434 7-17 Class 1 Materials 338 8-24 Electronic Equipment 439 7-18 Class 2 Materials 342 8-25 Liquid-Metal Embrittlement or Cracking 440 7-19 Class 3 Materials 345 8-26 Hydrogen Peroxide 441 7-20 Mixed Acids 346 8-27 Rebar Corrosion 443 | | 550 | 8-20 Coal Conversion | | | 7-16 Stainless Steels 337 8-23 Corrosion Under Insulation 439 7-17 Class 1 Materials 338 8-24 Electronic Equipment 439 7-18 Class 2 Materials 342 8-25 Liquid-Metal Embrittlement or Cracking 440 7-19 Class 3 Materials 345 8-26 Hydrogen Peroxide 441 7-20 Mixed Acids 346 8-27 Rebar Corrosion 443 | NIA-1- A-11 | | 8-21 Pulp and Popper I. d. | | | 7-16 Stainless Steels 337 6-23 Corrosion Under Insulation 439 | Nuric Acid | 337 | Dew Point Corresion | | | 7-18 Class 2 Materials 7-19 Class 3 Materials 7-19 Class 3 Materials 7-10 Mixed Acids 7-10 Mixed Acids 7-10 Class 3 Materials 7-10 Mixed Acids 7-10 Class 3 Materials 7-10 Mixed Acids 7-10 Class 3 Materials Mater | 7-16 Stainless Steels | 337 | 0-23 Corrosion Under L. 1 | | | 7-16 Class 2 Materials 7-19 Class 3 Materials 7-19 Mixed Acids 342 345 346 346 347 348 348 349 440 440 440 441 441 441 441 442 | 7-17 Class 1 Materials | | LICUITONIC FORMAN | | | 7-20 Mixed Acids 8-27 Rebar Corrosion 443 | 7-18 Class 2 Materials | | Liquid-Metal Embrida | | | 7-20 Mixed Acids 346 443 | 7-19 Class 3 Materials | | 8-26 Hydrogen Peroxide | | | | 7-20 Mixed Acids | | 0-2/ Kehon C | | | | | | ASSESSED TO ALLOW THE PROPERTY OF | | | xiv | CONTENTS | Æ | |--------------|---|------------| | 8-28
8-29 | | 443 | | Cha | apter 9 Modern Theory—Principles | 44 | | 9-1 | Introduction | 445 | | Ther | modynamics | 446 | | 9-2 | Free Energy | 445 | | 9-3 | Cell Potentials and the EMF Series | 446 | | 9-4 | Applications of Thermodynamics to Corrosion | 452 | | Elect | rode Kinetics | 454 | | 9-5 | Exchange Current Density | 456 | | 9-6 | Activation Polarization | 458 | | 9-7 | Concentration Polarization | 459 | | 9-8
9-9 | Combined Polarization Mixed-Potential Theory | 461 | | | Mixed Electrodes | 462 | | | Passivity | 463
469 | | | Mechanisms of the Growth and Breakdown of Passive Films | 474 | | Cha | pter 10 Modern Theory—Applications | 482 | | 10-1 | Introduction | 482 | | Predi | cting Corrosion Behavior | 482 | | | Effect of Oxidizers | 483 | | | Velocity Effects | 485 | | | Galvanic Coupling | 487 | | 10-3 | Alloy Evaluation | 492 | | Corro | sion Prevention | 495 | | 10-6 | | 495 | | 10-7 | Noble-Metal Alloying | 497 | | Corro | sion Rate Measurements | 499 | | 10-8 | Tafel Extrapolation | 499 | | 10-9 | Linear Polarization | 502 | | Cha | pter 11 High-Temperature Corrosion | 505 | | 11-1 | Introduction | 505 | | Mecha | anisms and Kinetics | 505 | | 11-2 | Pilling-Bedworth Ratio | 505 | | 11-3 | Electrochemical and Morphological Aspects of Oxidation | 507 | | | | CONTENTS XV | |--------------------------------------|---|---------------------------------| | 11-4
11-5
11-6
11-7
11-8 | Oxide Defect Structure Oxidation Kinetics Effect of Alloying Catastrophic Oxidation Internal Oxidation | 511
513
516
518
519 | | High-7 | Temperature Materials | 520 | | 11-9
11-10 | Mechanical Properties
Oxidation Resistance | 520
524 | | Other | Metal-Gas Reactions | 529 | | 11-11
11-12
11-13 | Decarburization and Hydrogen Attack
Corrosion of Metals by Sulfur Compounds at High Temperature
Hot Corrosion of Alloys | 529
534
541 | | Inde | X | 545 |