Contents | | Foreword | i | |-----------|---|--| | | Preface | xvi | | | Acknowledgments | XX | | Chapter 1 | Fundamentals of Quantitative Design and Analysis | | | | 1.1 Introduction 1.2 Classes of Computers 1.3 Defining Computer Architecture 1.4 Trends in Technology 1.5 Trends in Power and Energy in Integrated Circuits 1.6 Trends in Cost 1.7 Dependability 1.8 Measuring, Reporting, and Summarizing Performance 1.9 Quantitative Principles of Computer Design 1.10 Putting It All Together: Performance, Price, and Power 1.11 Fallacies and Pitfalls 1.12 Concluding Remarks 1.13 Historical Perspectives and References Case Studies and Exercises by Diana Franklin | 29
36
39
48
55
58
64
67 | | Chapter 2 | Memory Hierarchy Design | | | | 2.1 Introduction 2.2 Memory Technology and Optimizations 2.3 Ten Advanced Optimizations of Cache Performance 2.4 Virtual Memory and Virtual Machines 2.5 Cross-Cutting Issues: The Design of Memory Hierarchies 2.6 Putting It All Together: Memory Hierarchies in the ARM Cortex-A53 and Intel Core i7 6700 2.7 Fallacies and Pitfalls 2.8 Concluding Remarks: Looking Ahead 2.9 Historical Perspectives and References | 78
84
94
118
126
129
142
146
148 | | | | Case Studies and Exercises by Norman P. Jouppi, Rajeev
Balasubramonian, Naveen Muralimanohar, and Sheng Li | 148 | |-----------|---|--|--| | Chapter 3 | instr | uction-Level Parallelism and Its Exploitation | | | | 3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14 | Instruction-Level Parallelism: Concepts and Challenges Basic Compiler Techniques for Exposing ILP Reducing Branch Costs With Advanced Branch Prediction Overcoming Data Hazards With Dynamic Scheduling Dynamic Scheduling: Examples and the Algorithm Hardware-Based Speculation Exploiting ILP Using Multiple Issue and Static Scheduling Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and Speculation Advanced Techniques for Instruction Delivery and Speculation Cross-Cutting Issues Multithreading: Exploiting Thread-Level Parallelism to Improve Uniprocessor Throughput Putting It All Together: The Intel Core i7 6700 and ARM Cortex-A53 Fallacies and Pitfalls Concluding Remarks: What's Ahead? Historical Perspective and References Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell | 168
176
182
191
201
208
218
222
228
240
242
247
258
264
266
266 | | Chapter 4 | Data | -Level Parallelism in Vector, SIMD, and GPU Architectures | | | | 4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10 | Introduction Vector Architecture SIMD Instruction Set Extensions for Multimedia Graphics Processing Units Detecting and Enhancing Loop-Level Parallelism Cross-Cutting Issues Putting It All Together: Embedded Versus Server GPUs and Tesla Versus Core i7 Fallacies and Pitfalls Concluding Remarks Historical Perspective and References Case Study and Exercises by Jason D. Bakos | 282
283
304
310
336
345
346
353
357
357
357 | | Chapter 5 | Thre | ad-Level Parallelism | | | | 5.2 | Introduction
Centralized Shared-Memory Architectures
Performance of Symmetric Shared-Memory Multiprocessors | 368
377
393 | | | 5.11 | Synchronization: The Basics Models of Memory Consistency: An Introduction Cross-Cutting Issues Putting It All Together: Multicore Processors and Their Performance Fallacies and Pitfalls The Future of Multicore Scaling Concluding Remarks Historical Perspectives and References Case Studies and Exercises by Amr Zaky and David A. Wood | 404
412
417
422
426
438
442
444
445
446 | |-----------|------------|--|--| | Chapter 6 | | ehouse-Scale Computers to Exploit Request-Level
Data-Level Parallelism | | | | 6.1 | Introduction | 466 | | | 6.2 | Programming Models and Workloads for Warehouse-Scale | | | | | Computers | 471 | | | 6.3 | Computer Architecture of Warehouse-Scale Computers | 477 | | | 6.4 | The Efficiency and Cost of Warehouse-Scale Computers | 482 | | | 6.5 | Cloud Computing: The Return of Utility Computing | 490 | | | 6.6 | Cross-Cutting Issues | 501 | | | 6.7 | Putting It All Together: A Google Warehouse-Scale Computer Fallacies and Pitfalls | 503
514 | | | 6.8
6.9 | Concluding Remarks | 514 | | | | Historical Perspectives and References | 519 | | | 0.10 | Case Studies and Exercises by Parthasarathy Ranganathan | 519 | | Chapter 7 | Don | nain-Specific Architectures | | | | 7.1 | Introduction | 540 | | | 7.2 | Guidelines for DSAs | 543 | | | 7.3 | Example Domain: Deep Neural Networks | 544 | | | 7.4 | Google's Tensor Processing Unit, an Inference Data | | | | | Center Accelerator | 557 | | | 7.5 | Microsoft Catapult, a Flexible Data Center Accelerator | 567 | | | 7.6 | Intel Crest, a Data Center Accelerator for Training | 579 | | | 7.7 | Pixel Visual Core, a Personal Mobile Device Image Processing Unit | 579 | | | 7.8 | Cross-Cutting Issues Putting It All Tagether CPUs Versus CPUs Versus DNN Asselerators | 592 | | | 7.9 | Putting It All Together: CPUs Versus GPUs Versus DNN Accelerators Fallacies and Pitfalls | 595
602 | | | | Concluding Remarks | 604 | | | | Historical Perspectives and References | 606 | | | | Case Studies and Exercises by Cliff Young | 606 | | | | 51 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | A Ir | nstruction Set Principles | | |---|--|---| | A.
A.
A.
A.
A.
A.
A.
A.
A.
A.
A.
A.
A.
A | Classifying Instruction Set Architectures Memory Addressing Type and Size of Operands Operations in the Instruction Set Instructions for Control Flow Encoding an Instruction Set Cross-Cutting Issues: The Role of Compilers Putting It All Together: The RISC-V Architecture Fallacies and Pitfalls Concluding Remarks | A-2
A-3
A-13
A-15
A-16
A-21
A-24
A-33
A-42
A-46
A-47 | | Re | view of Memory Hierarchy | | | B.1 | Introduction | B-2
B-15
B-22
B-40
B-49
B-57
B-59
B-60 | | Pipe | elining: Basic and Intermediate Concents | | | C.1
C.2
C.3
C.4
C.5
C.6
C.7
C.8
C.9
C.10 | Introduction The Major Hurdle of Pipelining—Pipeline Hazards How Is Pipelining Implemented? What Makes Pipelining Hard to Implement? Extending the RISC V Integer Pipeline to Handle Multicycle Operations Putting It All Together: The MIPS R4000 Pipeline Cross-Cutting Issues Fallacies and Pitfalls Concluding Remarks Historical Perspective and References | C-2 .
C-10
C-26
C-37
C-45
C-55
C-65
C-70
C-71
C-71 | | | A. A | A.1 Introduction A.2 Classifying Instruction Set Architectures A.3 Memory Addressing A.4 Type and Size of Operands A.5 Operations in the Instruction Set A.6 Instructions for Control Flow A.7 Encoding an Instruction Set A.8 Cross-Cutting Issues: The Role of Compilers A.9 Putting It All Together: The RISC-V Architecture A.10 Fallacies and Pitfalls A.11 Concluding Remarks A.12 Historical Perspective and References Exercises by Gregory D. Peterson Review of Memory Hierarchy B.1 Introduction B.2 Cache Performance B.3 Six Basic Cache Optimizations B.4 Virtual Memory B.5 Protection and Examples of Virtual Memory B.6 Fallacies and Pitfalls B.7 Concluding Remarks B.8 Historical Perspective and References Exercises by Amr Zaky Pipelining: Basic and Intermediate Concepts C.1 Introduction C.2 The Major Hurdle of Pipelining—Pipeline Hazards C.3 How Is Pipelining Implemented? C.4 What Makes Pipelining Hard to Implement? C.5 Extending the RISC V Integer Pipeline to Handle Multicycle Operations C.6 Putting It All Together: The MIPS R4000 Pipeline C.7 Cross-Cutting Issues C.8 Fallacies and Pitfalls | | | Online Appendices | | |------------|---|---| | Appendix D | Storage Systems | | | Appendix E | Embedded Systems | | | | by Thomas M. Conte | | | Appendix F | Interconnection Networks | | | | by Timothy M. Pinkston and José Duato | | | Appendix G | Vector Processors in More Depth | | | | by Krste Asanovic | | | Appendix H | Hardware and Software for VLIW and EPIC | | | Appendix I | Large-Scale Multiprocessors and Scientific Applications | | | Appendix J | Computer Arithmetic | | | | by David Goldberg | | | Appendix K | Survey of Instruction Set Architectures | | | Appendix L | Advanced Concepts on Address Translation | | | | by Abhishek Bhattacharjee | | | Appendix M | Historical Perspectives and References | | | | References | R | | | Index | ı | | | | |