Contents

	ntributors face	1
1.	Mechanism design for legged locomotion systems Giuseppe Carbone, Marco Ceccarelli 1 Introduction	
	 Characteristics of legged locomotion Existing legged locomotion systems Design considerations for legged locomotion systems Illustrative examples Conclusions References Further reading 	1 1 3 3 3
2.	Gait analysis and regeneration by means of principal component analysis and its application to kinematic design of wearable walking assist device for hemiplegics Daisuke Matsuura, Yuta Chounan, Masaki Omata, Yusuke Sugahara, Yukio Takeda	3
	 1 Introduction 2 Gait analysis and generation based on principal component analysis 3 Kinematic synthesis of a wearable walking assist device for hemiplegics 4 Conclusions References 	3 3 4 4
3.	Multibody dynamics for human-like locomotion Mario Acevedo, Hiram Ponce	5
	 1 Introduction 2 Stability in human-like locomotion 3 One-leg mechanism model 4 Control of and learning the balancing task 5 Experimental results 6 Conclusions Acknowledgments References 	5 5 6 6 7 7

	Human lower limb operation tracking via motion capture systems Med Amine Laribi, Said Zeghloul	83
	1 Introduction	83
	2 Analysis of human walking	85
	3 Quantitative gait analysis	86
	4 Human walking analysis	89
	5 Analysis of obstacle overcoming	95
	6 Conclusion	104
	Acknowledgments	106
	References	106
	Design and operation of exoskeletons for limb replacement	
•	or performance enhancement	109
	Aleksandar Rodić, Svemir Popić, Miloš Jovanović	
	1 Introduction	109
	2 Biomechanical aspects of biped locomotion	110
	3 Mechanical design and operation of exoskeletons	122
	4 Control of exoskeletons	147
	5 Conclusion	153
	References	154
	Neierica	
In	ndex	159
1 11	WCA .	