Contents | | ntributors
face | 1 | |----|---|----------------------------| | 1. | Mechanism design for legged locomotion systems Giuseppe Carbone, Marco Ceccarelli 1 Introduction | | | | Characteristics of legged locomotion Existing legged locomotion systems Design considerations for legged locomotion systems Illustrative examples Conclusions References Further reading | 1
1
3
3
3 | | 2. | Gait analysis and regeneration by means of principal component
analysis and its application to kinematic design of wearable
walking assist device for hemiplegics
Daisuke Matsuura, Yuta Chounan, Masaki Omata, Yusuke Sugahara,
Yukio Takeda | 3 | | | 1 Introduction 2 Gait analysis and generation based on principal component analysis 3 Kinematic synthesis of a wearable walking assist device for hemiplegics 4 Conclusions References | 3
3
4
4 | | 3. | Multibody dynamics for human-like locomotion Mario Acevedo, Hiram Ponce | 5 | | | 1 Introduction 2 Stability in human-like locomotion 3 One-leg mechanism model 4 Control of and learning the balancing task 5 Experimental results 6 Conclusions Acknowledgments References | 5
5
6
6
7
7 | | | Human lower limb operation tracking via motion capture systems Med Amine Laribi, Said Zeghloul | 83 | |------|---|-----| | | 1 Introduction | 83 | | | 2 Analysis of human walking | 85 | | | 3 Quantitative gait analysis | 86 | | | 4 Human walking analysis | 89 | | | 5 Analysis of obstacle overcoming | 95 | | | 6 Conclusion | 104 | | | Acknowledgments | 106 | | | References | 106 | | | Design and operation of exoskeletons for limb replacement | | | • | or performance enhancement | 109 | | | Aleksandar Rodić, Svemir Popić, Miloš Jovanović | | | | 1 Introduction | 109 | | | 2 Biomechanical aspects of biped locomotion | 110 | | | 3 Mechanical design and operation of exoskeletons | 122 | | | 4 Control of exoskeletons | 147 | | | 5 Conclusion | 153 | | | References | 154 | | | Neierica | | | In | ndex | 159 | | 1 11 | WCA . | |