## James O. Berger

## Statistical Decision Theory and Bayesian Analysis

Second Edition

With 23 Illustrations



James O. Berger Institute of Statistics and Decision Sciences Duke University Durham, NC 27708-0251 USA

AMS Classification: 60CXX

Library of Congress Cataloging-in-Publication Data Berger, James O.
Statistical decision theory and Bayesian analysis. (Springer series in statistics)
Bibliography: p.
Includes index.
1. Statistical decision. 2. Bayesian statistical decision theory. I. Title. II. Series.

Printed on acid-free paper.

QA279.4.B46 1985 519.5'42

This is the second edition of Statistical Decision Theory: Foundations, Concepts, and Methods. © 1980 Springer-Verlag New York, Inc.

85-9891

© 1980, 1985 by Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 1985 Softcover reprint of the hardcover 2nd edition 1985

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Act, may accordingly be used freely by anyone.

ISBN 978-1-4419-3074-3 ISBN 978-1-4757-4286-2 (eBook) DOI 10.1007/978-1-4757-4286-2

## Contents

| CHA | APTER 1                                         |    |
|-----|-------------------------------------------------|----|
| Bas | ic Concepts                                     | 1  |
| 1.1 | Introduction                                    | 1  |
| 1.2 | Basic Elements                                  | 3  |
| 1.3 | Expected Loss, Decision Rules, and Risk         | 8  |
|     | 1.3.1 Bayesian Expected Loss                    | 8  |
|     | 1.3.2 Frequentist Risk                          | 9  |
| 1.4 | Randomized Decision Rules                       | 12 |
| 1.5 | Decision Principles                             | 16 |
|     | 1.5.1 The Conditional Bayes Decision Principle  | 16 |
|     | 1.5.2 Frequentist Decision Principles           | 16 |
| 1.6 | Foundations                                     | 20 |
|     | 1.6.1 Misuse of Classical Inference Procedures  | 20 |
|     | 1.6.2 The Frequentist Perspective               | 22 |
|     | 1.6.3 The Conditional Perspective               | 24 |
|     | 1.6.4 The Likelihood Principle                  | 27 |
|     | 1.6.5 Choosing a Paradigm or Decision Principle | 33 |
| 1.7 | Sufficient Statistics                           | 35 |
| 1.8 | Convexity                                       | 38 |
|     | Exercises                                       | 41 |
| CHA | APTER 2                                         |    |
| Uti | lity and Loss                                   | 46 |
| 2.1 | Introduction                                    | 46 |
| 2.2 | Utility Theory                                  | 47 |
| 2.3 | The Utility of Money                            | 53 |
| 2.4 | The Loss Function                               | 57 |
|     | 2.4.1 Development from Utility Theory           | 57 |

Xii Contents

|     | 2.4.2 Certain Standard Loss Functions                       | 60  |
|-----|-------------------------------------------------------------|-----|
|     | 2.4.3 For Inference Problems                                | 64  |
|     | 2.4.4 For Predictive Problems                               | 66  |
|     | 2.4.5 Vector Valued Loss Functions                          | 68  |
| 2.5 | Criticisms                                                  | 69  |
|     | Exercises                                                   | 70  |
|     |                                                             |     |
|     | APTER 3 or Information and Subjective Probability           | 7.4 |
| FII | •                                                           | 74  |
| 3.1 | Subjective Probability                                      | 74  |
| 3.2 | Subjective Determination of the Prior Density               | 77  |
| 3.3 | Noninformative Priors                                       | 82  |
|     | 3.3.1 Introduction                                          | 82  |
|     | 3.3.2 Noninformative Priors for Location and Scale Problems | 83  |
|     | 3.3.3 Noninformative Priors in General Settings             | 87  |
|     | 3.3.4 Discussion                                            | 89  |
| 3.4 | Maximum Entropy Priors                                      | 90  |
| 3.5 | Using the Marginal Distribution to Determine the Prior      | 94  |
|     | 3.5.1 The Marginal Distribution                             | 94  |
|     | 3.5.2 Information About m                                   | 95  |
|     | 3.5.3 Restricted Classes of Priors                          | 97  |
|     | 3.5.4 The ML-II Approach to Prior Selection                 | 99  |
|     | 3.5.5 The Moment Approach to Prior Selection                | 101 |
|     | 3.5.6 The Distance Approach to Prior Selection              | 103 |
|     | 3.5.7 Marginal Exchangeability                              | 103 |
| 3.6 | Hierarchical Priors                                         | 104 |
| 3.7 | Criticisms                                                  | 109 |
| 3.8 | The Statistician's Role                                     | 113 |
|     | Exercises                                                   | 113 |
| CH4 | APTER 4                                                     |     |
| -   | esian Analysis                                              | 118 |
| 4.1 | Introduction                                                | 118 |
| 4.2 | The Posterior Distribution                                  | 126 |
|     | 4.2.1 Definition and Determination                          | 126 |
|     | 4.2.2 Conjugate Families                                    | 130 |
|     | 4.2.3 Improper Priors                                       | 132 |
| 4.3 | Bayesian Inference                                          | 132 |
|     | 4.3.1 Estimation                                            | 133 |
|     | 4.3.2 Credible Sets                                         | 140 |
|     | 4.3.3 Hypothesis Testing                                    | 145 |
|     | 4.3.4 Predictive Inference                                  | 157 |
| 4.4 | Bayesian Decision Theory                                    | 158 |
| ••• | 4.4.1 Posterior Decision Analysis                           | 158 |
|     | 4.4.2 Estimation                                            | 161 |
|     | 4.4.3 Finite Action Problems and Hypothesis Testing         | 163 |
|     | 4.4.4 With Inference Losses                                 | 166 |
|     |                                                             |     |

Contents xiii

| 4.5  | Empirical Bayes Analysis                                       | 167 |
|------|----------------------------------------------------------------|-----|
|      | 4.5.1 Introduction                                             | 167 |
|      | 4.5.2 PEB For Normal Means—The Exchangeable Case               | 169 |
|      | 4.5.3 PEB For Normal Means—The General Case                    | 173 |
|      | 4.5.4 Nonparametric Empirical Bayes Analysis                   | 178 |
| 4.6  | Hierarchical Bayes Analysis                                    | 180 |
|      | 4.6.1 Introduction                                             | 180 |
|      | 4.6.2 For Normal Means—The Exchangeable Case                   | 183 |
|      | 4.6.3 For Normal Means—The General Case                        | 190 |
|      | 4.6.4 Comparison with Empirical Bayes Analysis                 | 193 |
| 4.7  | Bayesian Robustness                                            |     |
|      | 4.7.1 Introduction                                             | 195 |
|      | 4.7.2 The Role of the Marginal Distribution                    | 199 |
|      | 4.7.3 Posterior Robustness: Basic Concepts                     | 203 |
|      | 4.7.4 Posterior Robustness: $\varepsilon$ -Contamination Class | 206 |
|      | 4.7.5 Bayes Risk Robustness and Use of Frequentist Measures    | 213 |
|      | 4.7.6 Gamma-Minimax Approach                                   | 215 |
|      | 4.7.7 Uses of the Risk Function                                | 218 |
|      | 4.7.8 Some Robust and Nonrobust Situations                     | 223 |
|      | 4.7.9 Robust Priors                                            | 228 |
|      | 4.7.10 Robust Priors for Normal Means                          | 236 |
|      | 4.7.11 Other Issues in Robustness                              | 247 |
| 4.8  | Admissibility of Bayes Rules and Long Run Evaluations          | 253 |
|      | 4.8.1 Admissibility of Bayes Rules                             | 253 |
|      | 4.8.2 Admissibility of Generalized Bayes Rules                 | 254 |
|      | 4.8.3 Inadmissibility and Long Run Evaluations                 | 257 |
| 4.9  | Bayesian Calculation                                           | 262 |
|      | 4.9.1 Numerical Integration                                    | 262 |
|      | 4.9.2 Monte Carlo Integration                                  | 263 |
|      | 4.9.3 Analytic Approximations                                  | 265 |
| 4.10 | Bayesian Communication                                         | 267 |
|      | 4.10.1 Introduction                                            | 267 |
|      | 4.10.2 An Illustration: Testing a Point Null Hypothesis        | 268 |
| 4.11 | Combining Evidence and Group Decisions                         | 271 |
|      | 4.11.1 Combining Probabilistic Evidence                        | 272 |
|      | 4.11.2 Combining Decision-Theoretic Evidence                   | 277 |
|      | 4.11.3 Group Decision Making                                   | 278 |
| 4.12 | Criticisms                                                     | 281 |
|      | 4.12.1 Non-Bayesian Criticisms                                 | 281 |
|      | 4.12.2 Foundational Criticisms                                 | 283 |
|      | Exercises                                                      | 286 |
|      | PTER 5                                                         |     |
| Min  | imax Analysis                                                  | 308 |
| 5.1  | Introduction                                                   | 308 |
| 5.2  | Game Theory                                                    | 310 |
|      | 5.2.1 Basic Elements                                           | 310 |
|      | 5.2.2 General Techniques for Solving Games                     | 319 |

XiV Contents

|      | 5.2.3    | Finite Games                                                    | 325        |
|------|----------|-----------------------------------------------------------------|------------|
|      |          | Games with Finite $\Theta$                                      | 33         |
|      |          | The Supporting and Separating Hyperplane Theorems               | 339        |
|      |          | The Minimax Theorem                                             | 345        |
| 5.3  |          | ical Games                                                      | 347        |
|      |          | Introduction                                                    | 347        |
|      |          | General Techniques for Solving Statistical Games                | 349        |
|      | 5.3.3    |                                                                 | 354        |
| 5.4  |          | es of Minimax Estimators                                        | 359        |
|      |          | Introduction The Unbiased Estimator of Risk                     | 359        |
|      |          | Minimax Estimators of a Normal Mean Vector                      | 361        |
|      | 5.4.4    |                                                                 | 363<br>369 |
| 5.5  |          | ation of the Minimax Principle                                  | 370        |
| 5.5  | 5.5.1    |                                                                 | 370        |
|      |          | Rationality and the Minimax Principle                           | 371        |
|      |          | Comparison with the Bayesian Approach                           | 371        |
|      |          | The Desire to Act Conservatively                                | 373<br>376 |
|      |          | Minimax Regret                                                  | 376        |
|      |          | Conclusions                                                     | 378        |
|      | Exerc    |                                                                 | 378        |
| CH   | APTER 6  | j                                                               |            |
| Inv  | ariance  |                                                                 | 388        |
| 6.1  | Introd   | uction                                                          | 388        |
| 6.2  |          |                                                                 | 391        |
|      |          | Groups of Transformations                                       | 391        |
|      |          | Invariant Decision Problems                                     | 393        |
|      |          | Invariant Decision Rules                                        | 395        |
|      |          | on Parameter Problems                                           | 397        |
|      |          | Examples of Invariance                                          | 400        |
| 6.5  |          | nal Invariants                                                  | 402        |
| 6.6  |          | ance and Noninformative Priors                                  | 406        |
|      |          | Right and Left Invariant Haar Densities The Best Invariant Rule | 406        |
|      |          | Confidence and Credible Sets                                    | 409        |
| 6.7  |          | ance and Minimaxity                                             | 414        |
|      |          | sibility of Invariant Rules                                     | 418<br>422 |
| 6.9  | Concli   | · · · · · · · · · · · · · · · · · · ·                           | 422        |
| 0.9  | Exerci   |                                                                 | 423<br>425 |
|      | LXCICI   | 303                                                             | 423        |
| CHA  | PTER 7   |                                                                 |            |
| Prej | posterio | r and Sequential Analysis                                       | 432        |
| 7.1  | Introdu  | action                                                          | 432        |
| 7.2  | Optima   | l Fixed Sample Size                                             | 435        |
| 7.3  | Sequen   | tial Analysis—Notation                                          | 441        |

Contents XV

| 7.4 | Bayesian Sequential Analysis                                                                                | 442        |
|-----|-------------------------------------------------------------------------------------------------------------|------------|
|     | 7.4.1 Introduction                                                                                          | 442        |
|     | 7.4.2 Notation                                                                                              | 445        |
|     | 7.4.3 The Bayes Decision Rule                                                                               | 446        |
|     | 7.4.4 Constant Posterior Bayes Risk                                                                         | 447        |
|     | 7.4.5 The Bayes Truncated Procedure                                                                         | 448        |
|     | 7.4.6 Look Ahead Procedures                                                                                 | 455        |
|     | 7.4.7 Inner Truncation                                                                                      | 459        |
|     | 7.4.8 Approximating the Bayes Procedure and the Bayes Risk                                                  | 462        |
|     | 7.4.9 Theoretical Results                                                                                   | 467        |
|     | 7.4.10 Other Techniques for Finding a Bayes Procedure                                                       | 473        |
| 7.5 | The Sequential Probability Ratio Test                                                                       | 481        |
|     | 7.5.1 The SPRT as a Bayes Procedure                                                                         | 482        |
|     | 7.5.2 Approximating the Power Function and the Expected Sample Size                                         | 485        |
|     | 7.5.3 Accuracy of the Wald Approximations                                                                   | 495        |
|     | 7.5.4 Bayes Risk and Admissibility                                                                          | 498        |
|     | 7.5.5 Other Uses of the SPRT                                                                                | 500        |
| 7.6 | Minimax Sequential Procedures                                                                               | 501        |
| 7.7 | The Evidential Relevance of the Stopping Rule                                                               | 502        |
|     | 7.7.1 Introduction                                                                                          | 502        |
|     | 7.7.2 The Stopping Rule Principle                                                                           | 502        |
|     | 7.7.3 Practical Implications                                                                                | 504        |
|     | 7.7.4 Criticisms of the Stopping Rule Principle                                                             | 506        |
|     | 7.7.5 Informative Stopping Rules                                                                            | 510        |
| 7.8 | Discussion of Sequential Loss Functions                                                                     | 511        |
|     | Exercises                                                                                                   | 513        |
| CH  | APTER 8                                                                                                     |            |
|     | nplete and Essentially Complete Classes                                                                     | 521        |
|     | •                                                                                                           |            |
| 8.1 | Preliminaries                                                                                               | 521        |
| 8.2 | Complete and Essentially Complete Classes from Earlier Chapters                                             | 522        |
|     | 8.2.1 Decision Rules Based on a Sufficient Statistic                                                        | 522        |
|     | 8.2.2 Nonrandomized Decision Rules                                                                          | 523        |
|     | 8.2.3 Finite $\Theta$                                                                                       | 523        |
| 0.3 | 8.2.4 The Neyman-Pearson Lemma                                                                              | 523        |
| 8.3 | One-Sided Testing                                                                                           | 525        |
| 8.4 | Monotone Decision Problems                                                                                  | 530        |
|     | 8.4.1 Monotone Multiple Decision Problems                                                                   | 530        |
| 0.5 | 8.4.2 Monotone Estimation Problems                                                                          | 534        |
| 8.5 | Limits of Bayes Rules                                                                                       | 537        |
| 8.6 | Other Complete and Essentially Complete Classes of Tests                                                    | 538        |
|     | 8.6.1 Two-Sided Testing                                                                                     | 538        |
|     | 8.6.2 Higher Dimensional Results                                                                            | 538        |
| 07  | 8.6.3 Sequential Testing                                                                                    | 540        |
| 8.7 | Complete and Essentially Complete Classes in Estimation                                                     | 541        |
|     | <ul><li>8.7.1 Generalized Bayes Estimators</li><li>8.7.2 Identifying Generalized Bayes Estimators</li></ul> | 541<br>543 |
|     | 0.7.2 Identifying Ocheranzed Dayes Estillaturs                                                              | J43        |

| xvi | Contents |
|-----|----------|

| 8.8           | Continuous Risk Functions                                          | 544 |
|---------------|--------------------------------------------------------------------|-----|
| 8.9           | Proving Admissibility and Inadmissibility                          | 546 |
|               | 8.9.1 Stein's Necessary and Sufficient Condition for Admissibility | 546 |
|               | 8.9.2 Proving Admissibility                                        | 547 |
|               | 8.9.3 Proving Inadmissibility                                      | 550 |
|               | 8.9.4 Minimal (or Nearly Minimal) Complete Classes                 | 552 |
|               | Exercises                                                          | 554 |
| APF           | PENDIX 1                                                           |     |
| Co            | mmon Statistical Densities                                         | 559 |
| I             | Continuous                                                         | 559 |
| II            | Discrete                                                           | 562 |
| APF           | PENDIX 2                                                           |     |
| Sup           | oplement to Chapter 4                                              | 563 |
| I             | Definition and Properties of $H_m$                                 | 563 |
| II            | Development of (4.121) and (4.122)                                 | 564 |
| III           | Verification of Formula (4.123)                                    | 565 |
| APP           | PENDIX 3                                                           |     |
| Tec           | chnical Arguments from Chapter 7                                   | 568 |
| I             | Verification of Formula (7.8)                                      | 568 |
| II            | Verification of Formula (7.10)                                     | 569 |
|               | liography                                                          | 571 |
|               | tation and Abbreviations                                           | 599 |
|               | Author Index                                                       |     |
| Subject Index |                                                                    | 609 |