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Preface

The aim of this book is to introduce the reader to the fascinating world
of convex polytopes. The book developed from a course that I taught at
the Technische Universität Berlin, as a part of the Graduierten-Kolleg “Al-
gorithmische Diskrete Mathematik.” I have tried to preserve some of the
flavor of lecture notes, and I have made absolutely no effort to hide my
enthusiasm for the mathematics presented, hoping that this will be enough
of an excuse for being “informal” at times.

There is no P2C2E in this book.∗

Each of the ten lectures (or chapters, if you wish) ends with extra notes
and historical comments, and with exercises of varying difficulty, among
them a number of open problems (marked with an asterisk*), which I hope
many people will find challenging. In addition, there are lots of pointers to
interesting recent work, research problems, and related material that may
sidetrack the reader or lecturer, and are intended to do so.

Although these are notes from a two-hour, one-semester course, they
have been expanded so much that they will easily support a four-hour
course. The lectures (after the basics in Lectures 0 to 3) are essentially
independent from each other. Thus, there is material for quite different two-
hour courses in this book, such as a course on “duality, oriented matroids,
and zonotopes” (Lectures 6 and 7), or one on “polytopes and polyhedral
complexes” (Lectures 4, 5 and 9), etc.

∗P2C2E = “Process too complicated to explain” [469]



vi Preface

Still, I have to make a disclaimer. Current research on polytopes is very
much alive, treating a great variety of different questions and topics. There-
fore, I have made no attempt to be encyclopedic in any sense, although the
notes and references might appear to be closer to this than the text. The
main pointers to current research in the field of polytopes are the book by
Grünbaum (in its new edition [252]) and the handbook chapters by Klee
& Kleinschmidt [329] and by Bayer & Lee [63].

To illustrate that behind all of this mathematics (some of it spectacularly
beautiful) there are real people, I have attempted to compile a bibliogra-
phy with real names (i.e., including first names). In the few cases where
I couldn’t find more than initials, just assume that’s all they have (just like
T. S. Garp).

In fact, the masters of polytope theory are really nice and supportive
people, and I want to thank them for all their help and encouragement
with this project. In particular, thanks to Anders Björner, Therese Biedl,
Lou Billera, Jürgen Eckhoff, Eli Goodman, Martin Henk, Richard Hotzel,
Peter Kleinschmidt, Horst Martini, Peter McMullen, Ricky Pollack, Jörg
Rambau, Jürgen Richter-Gebert, Hans Scheuermann, Tom Shermer, An-
dreas Schulz, Oded Schramm, Mechthild Stoer, Bernd Sturmfels, and many
others for their encouragement, comments, hints, corrections, and refer-
ences. Thanks especially to Gil Kalai, for the possibility of presenting some
of his wonderful mathematics. In particular, in Section 3.4 we reproduce
his paper [299],

• Gil Kalai:
A simple way to tell a simple polytope from its graph,
J. Combinatorial Theory Ser. A 49 (1988), 381–383;
c©1988 by Academic Press Inc.,

with kind permission of Academic Press.
My typesetting relies on LATEX; the drawings were done with xfig. They

may not be perfect, but I hope they are clear. My goal was to have a
drawing on (nearly) every page, as I would have them on a blackboard, in
order to illustrate that this really is geometry.

Thanks to everybody at ZIB and to Martin Grötschel for their continuing
support.

Berlin, July 2, 1994
Günter M. Ziegler



Preface to the Second Printing

At the occasion of the second printing I took the opportunity to make
some revisions, corrections and updates, to add new references, and to
report about some very recent work.

However, as with the original edition there is no claim or even attempt to
be complete or encyclopedic. I can offer only my own, personal selection. So,
I could include only some highlights from and pointers to Jürgen Richter-
Gebert’s new book [459], which provides substantial new insights about
4-polytopes, and solved a number of open problems from the first version of
this book, including all the problems that I had posed in [574]. A summary
of some recent progress on polytopes is [576].

Also after this revision I will try to update this book in terms of an elec-
tronic preprint “Updates, Corrections, and More,” the latest and hottest
version of which you should always be able to get at

http://www.math.tu-berlin.de/~ziegler

Your contributions to this update are more than welcome.
For the first edition I failed to include thanks to Winnie T. Pooh for

his support during this project. I wish to thank Therese Biedl, Joe Bonin,
Gabor Hetyei, Winfried Hochstättler, Markus Kiderlen, Victor Klee, Elke
Pose, Jürgen Pulkus, Jürgen Richter-Gebert, Raimund Seidel, and in par-
ticular Günter Rote for useful comments and corrections that made it into
this revised version. Thanks to Torsten Heldmann for everything.

Berlin, June 6, 1997
Günter M. Ziegler



 



Preface to the Seventh Printing

It is wonderful to see that the “Lectures on Polytopes” are widely used as
a textbook in Discrete Geometry, as an introduction to the combinatorial
theory of polytopes, and as a starting point for fascinating research.

Thus, resisting for the moment a temptation to “rewrite” and expand
the book, I have done a lot of small updates on the text while leaving
the general format (and the page numbering) intact. In particular, I have
updated the bibliography, and added quite a number of new references,
many of them referring to open problems in the original 1995 edition of
this book that have in the meantime been fiercefully attacked — and at
least partially solved.

In Lecture 0, some examples are given for explicit computations of poly-
topes that I did using the PORTA software system [151]. It is wonderful
that by now we have a much more powerful and comprehensive system for
the computation and combinatorial analysis of polytopes, the POLYMAKE
system by Michael Joswig and Ewgenij Gawrilow [225, 226, 227]. Use it!

There are two new references available now that I would like to point you
to: Jǐŕı Matoušek’s “Lectures on Discrete Geometry” [382], and the second
edition of Branko Grünbaum’s classic “Convex Polytopes” [252], which I
had already announced in the 1995 preface to this book, and which finally
appeared in 2003 — a complete reprint of the book plus more than 100
pages of notes, updates, and new references. Grünbaum received the 2005
AMS Steele Prize for Exposition for his book, which very deservedly marks
its importance as the book that created the theory of polytopes as we know
it and to a large part guided its development until today.



x Preface to the Seventh Printing

On the occasion of this new revised printing, I want to thank my Springer
editors Tom von Förster, Joachim Heinze, Ina Lindemann, and most re-
cently Ann Kostant for their support over the years.

Finally, of the many other persons that I am grateful to and would like
to thank on this occasion let me name only one: Torsten Heldmann.

Berlin, March 19, 2007
Günter M. Ziegler
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