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Preface

This book is devoted to the development of geometric methods for studying
and revealing geometric aspects of the theory of differential equations with
quadratic right-hand sides (Riccati-type equations), which are closely related
to the calculus of variations and optimal control theory.

The book contains the following three parts, to each of which a separate
book could be devoted:

1. the classical calculus of variations and the geometric theory of the Riccati
equation (Chaps. 1-5),

2. complex Riccati equations as flows on Cartan—Siegel homogeneity do-
mains (Chap. 6), and

3. the minimization problem for multiple integrals and Riccati partial dif-
ferential equations (Chaps. 7 and 8).

Chapters 1-4 are mainly auxiliary. To make the presentation complete and
self-contained, I here review the standard facts (needed in what follows) from
the calculus of variations, Lie groups and algebras, and the geometry of Grass-
mann and Lagrange—Grassmann manifolds. When choosing these facts, I pre-
fer to present not the most general but the simplest assertions. Moreover, I try
to organize the presentation so that it is not obscured by formal and technical
details and, at the same time, is sufficiently precise.

Other chapters contain my results concerning the matrix double ratio, com-
plex Riccati equations, and also the Riccati partial differential equation, which
arises in the minimization problem for a multiple integral.

The book is based on a course of lectures given in the Department of Me-
chanics and Mathematics of Moscow State University during several years.
Therefore, when writing the book, I imagined the ideal readers to be the un-
dergraduate and graduate students in this department, who are familiar with
the foundations of calculus, differential equations, differential geometry, and
algebra (although, in some cases, I assumed that the reader is familiar with a
deeper mathematical technique). However, I hope that a wider audience will
find this book interesting. I also hope that the informed reader will tolerate as-
pects that seem trivial to him while the reader unfamiliar with one or another
mathematical object and encountering some difficulties in understanding the
text will resolve them using the literature cited and then excuse me for the
less-detailed explanation. Always in such cases, an author should strive for a
balance between the difficult and the obvious in order to transform the first
into the second. The reader can conclude whether I am successful in this.

I am grateful to my friends and colleagues for their indispensible help in
preparing this book. I am particularly grateful to the Candidates of Physics
and Mathematics V. F. Borisov, A. V. Dombrin, and L. F. Zelikina, to my
student R. Hildebrant for the laborious work in improving the text, to Pro-
fessors A. V. Arutyunov, A. S. Mishchenko, A. N. Parshin, and E. L. Tonkov
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for their very useful advice and suggestions, to Professor G. Freiling for very
valuable bibliographic information, to Professor S. S. Demidov for his valu-
able help in the history of mathematics, and to E. Yu. Khodan for the careful
editing of the manuscript.

The publication of the Russian edition of this book would have been im-
possible without the financial support of the Russian Foundation for Basic
Research (Grant No. 95-01-02867 for publication of the book, Grant No. 96-
01-01360 for research, and Grant No. 96-15-96072 for supporting leading sci-
entific schools), for which I am grateful.

I am deeply grateful to Professor R. Gamkrelidze, Professor S. Vakhrameev,
B. Everett, and Springer-Verlag for providing the publication of the English
translation of this book.

M. 1. Zelikin Moscow, September 1999
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