Nonlinear Functional Analysis and its Applications

II/B: Nonlinear Monotone Operators

David Hilbert (1862–1943)

Eberhard Zeidler

Nonlinear Functional Analysis and its Applications

II/B: Nonlinear Monotone Operators

Translated by the Author and by Leo F. Boron[†]

With 74 Illustrations

Springer Science+Business Media, LLC

Eberhard Zeidler Sektion Mathematik Karl-Marx-Platz 7010 Leipzig German Democratic Republic Leo F. Boron[†] Department of Mathematics University of Idaho Moscow, ID 83843 U.S.A.

Mathematics Subject Classification (1980): 46xx

Library of Congress Cataloging in Publication Data (Revised for vol. 2 pts. A-B) Zeidler, Eberhard. Vol. 2, pts. A-B: Translated by the author and Leo L. Boron. Vol. 3: Translated by Leo L. Boron. Vol. 4: Translated by Juergen Quandt. Includes bibliographies and indexes. Contents: 1. Fixed point theorems — 2. pt A. Linear monotone operators. Pt. B Nonlinear operators — [etc.] — 4. Applications to mathematical physics. 1. Nonlinear functional analysis. I. Title. QA321.5.Z4513 1985 515.7 83-20455

Printed on acid-free paper

Previous edition, Vorlesungen über nichtlineare Funktionalanalysis, Vols. I–III, published by B. G. Teubner Verlagsgesellschaft, 7010 Leipzig, Sternwartenstrasse 8, Deutsche Demokrati Republik.

© 1990 by Springer Science+Business Media New York

Originally published by Springer-Verlag New York in 1990

Softcover reprint of the hardcover 1st edition 1990

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC), except for brief excerpts in connection with reviews or scholarly analysis. Use inconnection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

Typeset by Asco Trade Typesetting Ltd., Hong Kong.

987654321

ISBN 978-1-4612-6969-4 DOI 10.1007/978-1-4612-0981-2 ISBN 978-1-4612-0981-2 (eBook)

To the memory of my parents

Preface to Part II/B

The present book is part of a comprehensive exposition of the main principles of nonlinear functional analysis and its numerous applications to the natural sciences and mathematical economics. The presentation is self-contained and accessible to a broader audience of mathematicians, natural scientists, and engineers. The material is organized as follows:

Part I: Fixed-point theorems. Part II: Monotone operators. Part III: Variational methods and optimization. Parts IV/V: Applications to mathematical physics.

Here, Part II is divided into two subvolumes:

Part II/A: Linear monotone operators. Part II/B: Nonlinear monotone operators.

These two subvolumes form a *unit* equipped with a uniform pagination. The contents of Parts II/A and II/B and the basic strategies of our presentation have been discussed in detail in the Preface to Part II/A. The present volume contains the complete index material for Parts II/A and II/B.

For valuable hints I would like to thank Ina Letzel, Frank Benkert, Werner Berndt, Günther Berger, Hans-Peter Gittel, Matthias Günther, Jürgen Herrler, and Rainer Schumann. I would also like to thank Professor Stefan Hildebrandt for his generous hospitality at the SFB in Bonn during several visits in the last few years. In conclusion, I would like to thank Springer-Verlag for a harmonious collaboration.

Leipzig Summer 1989 Eberhard Zeidler

Contents (Part II/B)

Preface	e to Part II/B	vii
GENE STAT	ERALIZATION TO NONLINEAR Ionary problems	469
Basic I	deas of the Theory of Monotone Operators	471
СНАР	TER 25	
Lipsch	itz Continuous, Strongly Monotone Operators, the	
Project	ion-Iteration Method, and Monotone Potential Operators	495
§25.1.	Sequences of k-Contractive Operators	497
§25.2.	The Projection–Iteration Method for k-Contractive Operators	499
§25.3.	Monotone Operators	500
§25.4.	The Main Theorem on Strongly Monotone Operators, and	
	the Projection-Iteration Method	503
§25.5.	Monotone and Pseudomonotone Operators, and	
	the Calculus of Variations	506
§25.6.	The Main Theorem on Monotone Potential Operators	516
§25.7.	The Main Theorem on Pseudomonotone Potential Operators	518
§25.8.	Application to the Main Theorem on Quadratic Variational	
	Inequalities	519
§25.9.	Application to Nonlinear Stationary Conservation Laws	521
§25.10.	Projection-Iteration Method for Conservation Laws	527
§25.11.	The Main Theorem on Nonlinear Stationary Conservation Laws	535
§25.12.	Duality Theory for Conservation Laws and Two-sided	
	a posteriori Error Estimates for the Ritz Method	537
§25.13.	The Kačanov Method for Stationary Conservation Laws	542
§25.14.	The Abstract Kačanov Method for Variational Inequalities	545

CHAPTER 26

Monot	one Operators and Quasi-Linear Elliptic	
Differe	ntial Equations	553
826.1	Hemicontinuity and Demicontinuity	554
§26.2.	The Main Theorem on Monotone Operators	556
826.3.	The Nemvckii Operator	561
§26.4.	Generalized Gradient Method for the Solution of	
3	the Galerkin Equations	564
§26.5.	Application to Quasi-Linear Elliptic Differential Equations	
0	of Order 2m	567
§26.6.	Proper Monotone Operators and Proper Quasi-Linear Elliptic	
Ū	Differential Operators	576
CHAP'	TER 27	
Pseudo	monotone Operators and Ouasi-Linear Elliptic	
Differe	ntial Equations	580
827.1	The Conditions (M) and (S) and the Convergence of	
827.11	the Galerkin Method	583
827.2	Pseudomonotone Operators	585
827.2. 827.3	The Main Theorem on Pseudomonotone Operators	589
\$27.3. 827.4	Application to Quasi-Linear Elliptic Differential Equations	590
\$27.5.	Relations Between Important Properties of Nonlinear Operators	595
827.6	Dual Pairs of B-Spaces	598
\$27.7.	The Main Theorem on Locally Coercive Operators	598
§27.8.	Application to Strongly Nonlinear Differential Equations	604
CHAP	TER 28	
Monot	one Operators and Hammerstein Integral Equations	615
§28.1.	A Factorization Theorem for Angle-Bounded Operators	619
§28.2.	Abstract Hammerstein Equations with Angle-Bounded	
5	Kernel Operators	620
§28.3.	Abstract Hammerstein Equations with Compact Kernel Operators	625
§28.4.	Application to Hammerstein Integral Equations	627
§28.5.	Application to Semilinear Elliptic Differential Equations	632
СНАР	TER 29	
Nonco	ercive Equations, Nonlinear Fredholm Alternatives,	
Locally	Monotone Operators, Stability, and Bifurcation	639
820 1	Pseudoresolvent Equivalent Coincidence Problems and the	
<i>§2)</i> .1.	Coincidence Degree	643
829.2	Fredholm Alternatives for Asymptotically Linear. Compact	
327.2.	Perturbations of the Identity	650
\$29.3	Application to Nonlinear Systems of Real Equations	652
829.4	Application to Integral Equations	653
§29.5.	Application to Differential Equations	653
§29.6.	The Generalized Antipodal Theorem	654
§29.7.	Fredholm Alternatives for Asymptotically Linear (S)-Operators	657
§29.8.	Weak Asymptotes and Fredholm Alternatives	657

§29.9.	Application to Semilinear Elliptic Differential Equations of	
	the Landesman–Lazer Type	661
§29.10.	The Main Theorem on Nonlinear Proper Fredholm Operators	665
§29.11.	Locally Strictly Monotone Operators	677
§29.12.	Locally Regularly Monotone Operators, Minima, and Stability	679
§29.13.	Application to the Buckling of Beams	697
§29.14.	Stationary Points of Functionals	706
§29.15.	Application to the Principle of Stationary Action	708
§29.16.	Abstract Statical Stability Theory	709
§29.17.	The Continuation Method	712
§29.18.	The Main Theorem of Bifurcation Theory for Fredholm	
	Operators of Variational Type	712
§29.19.	Application to the Calculus of Variations	722
§29.20.	A General Bifurcation Theorem for the Euler Equations	
	and Stability	730
§29.21.	A Local Multiplicity Theorem	733
§29.22.	A Global Multiplicity Theorem	735
GENI	ERALIZATION TO NONLINEAR	
NON	STATIONARY PROBLEMS	765
CHAP	TER 30	
First-C	Order Evolution Equations and the Galerkin Method	767
§30.1.	Equivalent Formulations of First-Order Evolution Equations	767
§30.2.	The Main Theorem on Monotone First-Order Evolution Equations	770
§30.3.	Proof of the Main Theorem	771
§30.4.	Application to Quasi-Linear Parabolic Differential Equations of Order 2m	779
§30.5.	The Main Theorem on Semibounded Nonlinear	,,,,
3	Evolution Equations	783
§30.6.	Application to the Generalized Korteweg-de Vries Equation	790
CHAP	TER 31	
Maxim	al Accretive Operators, Nonlinear Nonexpansive Semigroups,	
and Fi	rst-Order Evolution Equations	817
§31.1.	The Main Theorem	819
§31.2.	Maximal Accretive Operators	820
§31.3.	Proof of the Main Theorem	822
§31.4.	Application to Monotone Coercive Operators on B-Spaces	827
§31.5.	Application to Quasi-Linear Parabolic Differential Equations	829
§31.6.	A Look at Quasi-Linear Evolution Equations	830
§31.7.	A Look at Quasi-Linear Parabolic Systems Regarded as	
	Dynamical Systems	832
CHAP	TER 32	
Maxim	al Monotone Mappings	840
§32.1.	Basic Ideas	843

622.2		0.50
<u>8</u> 32.2.	Definition of Maximal Monotone Mappings	850
0		

§32.3.	Typical Examples for Maximal Monotone Mappings	854
§32.4.	The Main Theorem on Pseudomonotone Perturbations of	
	Maximal Monotone Mappings	866
§32.5.	Application to Abstract Hammerstein Equations	873
§32.6.	Application to Hammerstein Integral Equations	874
§32.7.	Application to Elliptic Variational Inequalities	874
§32.8.	Application to First-Order Evolution Equations	876
§32.9.	Application to Time-Periodic Solutions for Quasi-Linear	
	Parabolic Differential Equations	877
§32.10.	Application to Second-Order Evolution Equations	879
§32.11.	Regularization of Maximal Monotone Operators	881
§32.12.	Regularization of Pseudomonotone Operators	883
§32.13.	Local Boundedness of Monotone Mappings	884
§32.14.	Characterization of the Surjectivity of Maximal	
	Monotone Mappings	886
§32.15.	The Sum Theorem	888
§32.16.	Application to Elliptic Variational Inequalities	892
§32.17.	Application to Evolution Variational Inequalities	893
§32.18.	The Regularization Method for Nonuniquely Solvable	
	Operator Equations	894
§32.19.	Characterization of Linear Maximal Monotone Operators	897
§32.20.	Extension of Monotone Mappings	899
§32.21.	3-Monotone Mappings and Their Generalizations	901
§32.22.	The Range of Sum Operators	906
§32.23.	Application to Hammerstein Equations	908
§32.24.	The Characterization of Nonexpansive Semigroups in H-Spaces	909
CHAP	TER 33	
Second	-Order Evolution Equations and the Galerkin Method	919
§33.1.	The Original Problem	921
§33.2.	Equivalent Formulations of the Original Problem	921
§33.3.	The Existence Theorem	923
§33.4.	Proof of the Existence Theorem	924
§33.5.	Application to Quasi-Linear Hyperbolic Differential Equations	928
§33.6.	Strong Monotonicity, Systems of Conservation Laws, and	
-	Quasi-Linear Symmetric Hyperbolic Systems	930
§33.7.	Three Important General Phenomena	934
§33.8.	The Formation of Shocks	935
§33.9.	Blowing-Up Effects	937
§33.10.	Blow-Up of Solutions for Semilinear Wave Equations	944
§33.11.	A Look at Generalized Viscosity Solutions of	
	Hamilton–Jacobi Equations	947
GENE	ERAL THEORY OF DISCRETIZATION METHODS	959
CHAP	TER 34	
Inner A	Approximation Schemes, A-Proper Operators, and	
the Ga	lerkin Method	963

§34.1.	Inner Approximation Schemes	963
§34.2.	The Main Theorem on Stable Discretization Methods with	0(5
8313	Proof of the Main Theorem	903
834.J.	Inner Approximation Schemes in H-Spaces and the Main	900
30	Theorem on Strongly Stable Operators	969
§34.5.	Inner Approximation Schemes in B-Spaces	972
§34.6.	Application to the Numerical Range of Nonlinear Operators	974
СНАР	TER 35	
Extern	al Approximation Schemes, A-Proper Operators, and	
the Di	ference Method	978
§35.1.	External Approximation Schemes	980
§35.2.	Main Theorem on Stable Discretization Methods with	
	External Approximation Schemes	982
§35.3.	Proof of the Main Theorem	984
\$35.4. \$25.5	Discrete Sobolev Spaces	985
835.5. 835.6	Application to Difference Methods Proof of Convergence	900
<i>ş</i> 55.0.		770
CHAP	TER 36	
Mappi	ng Degree for A-Proper Operators	997
§36.1.	Definition of the Mapping Degree	998
§36.2.	Properties of the Mapping Degree	1000
§36.3.	The Antipodal Theorem for A-Proper Operators	1000
§36.4.	A General Existence Principle	1001
Appen	dix	1009
Referen	nces	1119
List of	Symbols	1163
List of	Theorems	1174
List of	the Most Important Definitions	1179
List of	Schematic Overviews	1182
List of	Important Principles	1183
Index		1189

Contents (Part II/A)

xv