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To the memory of my parents 



Preface to Part 11/B 

The present book is part of a comprehensive exposition of the main principles 
of nonlinear functional analysis and its numerous applications to the natural 
sciences and mathematical economics. The presentation is self-contained and 
accessible to a broader audience of mathematicians, natural scientists, and 
engineers. The material is organized as follows: 

Part 1: Fixed-point theorems. 
Part II: Monotone operators. 
Part III: Variational methods and optimization. 
Parts IV /V: Applications to mathematical physics. 

Here, Part II is divided into two subvolumes: 

Part II/ A: Linear monotone operators. 
Part II/B: Nonlinear monotone operators. 

These two subvolumes form a unit equipped with a uniform pagination. The 
contents of Parts II/ A and II/B and the basic strategies of our presentation 
have been discussed in detail in the Preface to Part II/A. The present volume 
contains the complete index material for Parts II/ A and II/B. 

For valuable hints I would like to thank Ina Letzel, Frank Benkert, Werner 
Berndt, Gunther Berger, Hans-Peter Gittel, Matthias Gunther, Jurgen Herder, 
and Rainer Schumann. I would also like to thank Professor Stefan Hildebrandt 
for his generous hospitality at the SFB in Bonn during several visits in the 
last few years. In conclusion, I would like to thank Springer-Verlag for a 
harmonious collaboration. 

Leipzig 
Summer 1989 

Eberhard Zeidler 
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