Eberhard Zeidler

Applied Functional Analysis Main Principles and Their Applications

With 37 Illustrations

Eberhard Zeidler Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Inselstrasse 22-26 Leipzig, D-04103 Germany

Editors
J.E. Marsden
Control and Dynamical Systems
107-81
California Institute of Technology
Pasadena, CA 91125
USA

L. Sirovich
Division of Applied
Mathematics
Brown University
Providence, RI 02912
USA

Mathematics Subject Classification (1991): 34A12, 42A16, 35J05

Library of Congress Cataloging-in-Publication Data

Zeidler, Eberhard

Applied functional analysis: main principles and their applications / Eberhard Zeidler.

p. cm. - (Applied mathematical sciences; v. 109)

Includes bibliographical references and index.

ISBN 978-1-4612-6913-7 ISBN 978-1-4612-0821-1 (eBook)

DOI 10.1007/978-1-4612-0821-1

1. Functional analysis. I. Title. II. Series: Applied mathematical sciences (Springer-Verlag New York Inc.); v. 109.

QA1.A647 vol. 109

[QA320]

510 s—dc20 [515'.7]

94-41480

Printed on acid-free paper.

© 1995 Springer Science+Business Media New York

Originally published by Springer-Verlag New York, Inc in 1995

Softcover reprint of the hardcover 1st edition 1995

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC,

except for brief excerpts in connection with reviews or scholarly

analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Laura Carlson; manufacturing supervised by Joe Quatela. Photocomposed copy prepared using LAT_PX.

 $9\; 8\; 7\; 6\; 5\; 4\; 3\; 2$

ISBN 978-1-4612-6913-7

SPIN 10681507

Contents

Preface Contents of AMS Volume 108				
	1.1	The Hahn–Banach Theorem	2	
	1.2	Applications to the Separation of Convex Sets	6	
	1.3	The Dual Space $C[a,b]^*$	10	
	1.4	Applications to the Moment Problem	13	
	1.5	Minimum Norm Problems and Duality Theory	15	
	1.6	Applications to Čebyšev Approximation	19	
	1.7	Applications to the Optimal Control of Rockets	20	
2	Variational Principles and Weak Convergence			
	2.1	The <i>n</i> th Variation	43	
	2.2	Necessary and Sufficient Conditions for Local Extrema		
		and the Classical Calculus of Variations	45	
	2.3	The Lack of Compactness in Infinite-Dimensional Banach		
		Spaces	48	
	2.4	Weak Convergence	49	
	2.5	The Generalized Weierstrass Existence Theorem	53	
	2.6	Applications to the Calculus of Variations	56	
	2.7	Applications to Nonlinear Eigenvalue Problems	59	
	2.8	Reflexive Banach Spaces	61	

x Contents

	2.9	Applications to Convex Minimum Problems and	
		Variational Inequalities	66
		Applications to Obstacle Problems in Elasticity	71
		Saddle Points	72
		Applications to Duality Theory	73
	2.13	The von Neumann Minimax Theorem on the Existence of	
		Saddle Points	75
		Applications to Game Theory	81
		The Ekeland Principle about Quasi-Minimal Points	83
	2.16	Applications to a General Minimum Principle via the	
		Palais–Smale Condition	86
		Applications to the Mountain Pass Theorem	87
	2.18	The Galerkin Method and Nonlinear Monotone Operators .	93
	2.19	Symmetries and Conservation Laws (The Noether Theorem)	98
	2.20	The Basic Ideas of Gauge Field Theory	102
	2.21	Representations of Lie Algebras	107
	2.22	Applications to Elementary Particles	112
3		nciples of Linear Functional Analysis	167
	3.1	The Baire Theorem	169
	3.2	Application to the Existence of Nondifferentiable	
		Continuous Functions	171
	3.3	The Uniform Boundedness Theorem	172
	3.4	Applications to Cubature Formulas	175
	3.5	The Open Mapping Theorem	178
	3.6	Product Spaces	180
	3.7	The Closed Graph Theorem	181
	3.8	Applications to Factor Spaces	183
	3.9	Applications to Direct Sums and Projections	188
		Dual Operators	199
		The Exactness of the Duality Functor	205
	3.12	Applications to the Closed Range Theorem and to	
		Fredholm Alternatives	210
4	mi	Totali de Properior (Discourse	225
4		Implicit Function Theorem	227
	4.1	m-Linear Bounded Operators	
	4.2	The Differential of Operators and the Fréchet Derivative	228
	4.3	Applications to Analytic Operators	233
	4.4	Integration	238
	4.5	Applications to the Taylor Theorem	$\frac{243}{244}$
	4.6	Iterated Derivatives	244
	4.7	The Chain Rule	247
	4.8	The Implicit Function Theorem	250
	4.9	Applications to Differential Equations	254
	4.10	Diffeomorphisms and the Local Inverse Mapping Theorem.	258

		Contents	xi		
		Equivalent Maps and the Linearization Principle The Local Normal Form for Nonlinear Double	260		
		Splitting Maps	264		
		The Surjective Implicit Function Theorem	268		
	4.14	Applications to the Lagrange Multiplier Rule	270		
5	Fred	lholm Operators	281		
	5.1	Duality for Linear Compact Operators	284		
	5.2	The Riesz-Schauder Theory on Hilbert Spaces	286		
	5.3	Applications to Integral Equations	291		
	5.4	Linear Fredholm Operators	292		
	5.5	The Riesz–Schauder Theory on Banach Spaces	295		
	5.6	Applications to the Spectrum of Linear Compact			
		Operators	296		
	5.7	The Parametrix	298		
	5.8	Applications to the Perturbation of Fredholm Operators	300		
	5.9	Applications to the Product Index Theorem	301		
		Fredholm Alternatives via Dual Pairs	303		
	5.11	Applications to Integral Equations and Boundary-Value			
		Problems	305		
		Bifurcation Theory	309		
		Applications to Nonlinear Integral Equations	313		
		Applications to Nonlinear Boundary-Value Problems	315		
		Nonlinear Fredholm Operators	317		
		Interpolation Inequalities	322		
	5.17	Applications to the Navier–Stokes Equations	329		
R	efere	nces	371		
Li	List of Symbols				
Li	List of Theorems				
Li	List of Most Important Definitions				
Sı	Subject Index				