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PREFACE 

This second volume of our treatise on commutative algebra deals 
largely with three basic topics, which go beyond the more or less classical 
material of volume I and are on the whole of a more advanced nature 
and a more recent vintage. These topics are: (a) valuation theory; (b) 
theory of polynomial and power series rings (including generalizations to 
graded rings and modules); (c) local algebra. Because most of these 
topics have either their source or their best motivation in algebraic geom
etry, the algebro-geometric connections and applications of the purely 
algebraic material are constantly stressed and abundantly scattered through
out the exposition. Thus, this volume can be used in part as an introduc
tion to some basic concepts and the arithmetic foundations of algebraic 
geometry. The reader who is not immediately concerned with geometric 
applications may omit the algebro-geometric material in a first reading 
(see" Instructions to the reader," page vii), but it is only fair to say that 
many a reader will find it more instructive to find out immediately what 
is the geometric motivation behind the purely algebraic material of this 
volume. 

The first 8 sections of Chapter VI (including § 5bis) deal directly with 
properties of places, rather than with those of the valuation associated 
with a place. These, therefore, are properties of valuations in which the 
value group of the valuation is not involved. The very concept of a valua
tion is only introduced for the first time in § 8, and, from that point on, 
the more subtle properties of valuations which are related to the value 
group come to the fore. These are illustrated by numerous examples, taken 
largely from the theory of algebraic function fields (§§ 14, 15). The 
last two sections of the chapter contain a general treatment, within the 
framework of arbitrary commutative integral domains, of two concepts 
which are of considerable importance in algebraic geometry (the Riemann 
surface of a field and the notions of normal and derived normal models). 

The greater part of Chapter VII is de\'oted to classical properties of 
polynomial and power series rings (e.g., dimension theory) and their 
applications to algebraic geometry. This chapter also includes a treatment 
of graded rings and modules and such topics as characteristic (Hilbert) 
functions and chains of syzygies. In the past, these last two topics repre
sented some final words of the algebraic theory, to be followed only by 
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vi PREFACE 

deeper geometric applications. With the modern development of homo
logical methods in commutative algebra, these topics became starting points 
of extensive, purely algebraic theories, having a much wider range of 
applications. We could not include, without completely disrupting the 
balance of this volume, the results which require the use of truly homological 
methods (e.g., torsion and extension functors, complexes, spectral se
quences). However, we have tried to Include the results which may be 
proved by methods which, although inspired by homological algebra, are 
nevertheless classical in nature. The reader will find these results in 
Chapter VII, §§ 12 and 13, and in Appendices 6 and 7. No previous 
knowledge of homological algebra is needed for reading these parts of the 
volume. The reader who wants to see how truly homological methods 
may be applied to commutative algebra is referred to the original papers 
of M. Auslander, D. Buchsbaum, A. Grothendieck, D. Rees, J.-P. Serre, 
etc., to a forthcoming book of D. C. Northcott, as well, of course, as to the 
basic treatise of Cartan-Eilenberg. 

Chapter VIII deals with the theory of local rings. This theory pro
vides the algebraic basis for the local study of algebraic and analytical 
varieties. The first six sections are rather elementary and deal with more 
general rings than local rings. Deeper results are presented in the rest of 
the chapter, but we have not attempted to give an encyclopedic account of 
the subject. 

While much of the material appears here for the first time in book 
form, there is also a good deal of material which is new and represents 
current or unpublished research. The appendices treat special topics of 
current interest (the first 5 were written by the senior author; the last 
two by the junior author), except that Appendix 6 gives a smooth treatment 
of two important theorems proved in the text. Appendices 4 and 5 are 
of particular interest from an algebro-geometric point of view. 

We have not attempted to trace the origin of the various proofs in this 
volume. Some of these proofs, especially in the appendices, are new. 
Others are transcriptions or arrangements of proofs taken from original 
papers. 

We wish to acknowledge the assistance which we have received from 
M. Hironaka, T. Knapp, S. Shatz, and M. Schlesinger in the work of 
checking parts of the manuscript and of reading the galley proofs. Many 
improvements have resulted from their assistance. 

The work on Appendix 5 was' supported by a Research project at 
Harvard University sponsored by the Air Force Office of Scientific Re
search. 

Cambridge, Massachusetts 
Clermont-Ferrand, France 

OSCAR ZARISKI 

PIERRE SAMUEL 



INSTRUCTIONS TO THE READER 

As this volume contains a number of topics which either are· of some
what specialized nature (but still belong to pure algebra) or belong to 
algebraic geometry, the reader who wishes first to acquaint himself with 
the basic algebraic topics before turning his attention to deeper and more 
specialized results or to geometric applications, may very well skip some 
parts of this volume during a first reading. The material which may thus 
be postponed to a second reading is the following: 

CHAPTER VI 
All of § 3, except for the proof of the first two assertions of Theorem 

3 and the definition of the rank of a place; § 5: Theorem 10, the lemma and 
its corollary; § 5bis (if not immediately interested in geometric applica
tions); § 11: Lemma 4 and pages 57-67 (beginning with part (b) of 
Theorem 19); § 12; § 14: The last part of the section, beginning with 
Theorem 34'; § 15 (if not interested in examples) ; §§ 16, 17, and 18. 

CHAPTER VII 
§§ 3, 4, 4bis, 5 and 6 (if not immediately interested in geometric appli

cations) ; all of § 8, except for the statement of Macaulay's theorem and 
(if it sounds interesting) the proof (another proof, based on local algebra, 
may be found in Appendix 6) ; § 9: Theorem 29 and the proof of Theorem 
30 (this theorem is contained in Theorem 25) ; § 11 (the contents of this 
section are particularly useful in geometric applications). 

CHAPTER VIII 
All of § 5, except for Theorem 13 and its Corollary 2; § 10; § 11 : 

Everything concerning multiplicities; all of.§ 12, except for Theorem 27 
(second proof recommended) and the statement of the theorem of Cohen
Macaulay; § 13. 

All appendices may be omitted in a first reading. 
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