Stephen Wiggins

Introduction to Applied Nonlinear Dynamical Systems and Chaos

With 291 Illustrations

Springer Science+Business Media, LLC

Stephen Wiggins Department of Applied Mechanics California Institute of Technology Pasadena, California 91125, USA

Series Editors

natics Division of Applied
ia Mathematics
Brown University
Providence, RI 02912
USA
t
7
294
}
d chaos /
ories.
80-77837

Mathematics Subject Classification (1980): 58 Fxx, 34Cxx, 70Kxx

© 1990 Springer Science+Business Media New York

Originally published by Springer-Verlag New York, Inc. in 1990 Softcover reprint of the hardcover 1st edition 1990

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC,

except for brief excerpts in connection with reviews or scholarly analysis. Use in

connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Act, may accordingly be used freely by anyone.

While the advice and information in this book is believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Camera-ready copy prepared using a LaTeX file.

9 8 7 6 5 4 3 2 1 Printed on acid-free paper.

ISBN 978-1-4757-4069-1 ISBN 978-1-4757-4067-7 (eBook) DOI 10.1007/978-1-4757-4067-7

Contents

	Ser	ies Pre	eface	vii
	Pre	face		ix
0	Inti	roduct	ion	1
1	The Sys and	e Geor tems: l Exan	netrical Point of View of Dynamical Background Material, Poincaré Maps, nples	5
	1.1	Backg	round Material from Dynamical Systems Theory	6
		1.1A	Equilibrium Solutions: Linearized Stability	6
		1.1в	Liapunov Functions	10
		1.1c	Invariant Manifolds: Linear and Nonlinear	
			Systems	14
		1.1d	Periodic Solutions	25
		$1.1 \mathrm{E}$	Integrable Vector Fields on Two-Manifolds	28
		1.1F	Index Theory	35
		1.1G	Some General Properties of Vector Fields:	
			Existence, Uniqueness, Differentiability, and Flows	36
		1.1н	Asymptotic Behavior	41
		1.11	The Poincaré–Bendixson Theorem	46
		Exerci	ises	51
	1.2 Poincare		aré Maps: Theory, Construction, and Examples	64
		1.2A	Poincaré Maps: Examples	64
		1.2B	Varying the Cross-Section: Conjugacies of Maps	89
		$1.2\mathrm{C}$	Structural Stability, Genericity, and	
			Transversality	94
		1.2d	Construction of the Poincaré Map	103
		$1.2 \mathrm{E}$	Application to the Dynamics of the Damped,	
			Forced Duffing Oscillator	153
		Exerci	ises	175

2	Me	thods	for Simplifying Dynamical Systems	193
	2.1	Center 2.1A	Manifolds Center Manifolds for Vector Fields	193 194
		2.1B	Center Manifolds Depending on Parameters	198
		2.1C	The Inclusion of Linearly Unstable Directions	203
		2.1D	Center Manifolds for Maps	204
		2.1E	Properties of Center Manifolds	210
	2.2	Norma	l Forms	211
		2.2A	Normal Forms for Vector Fields	212
		2.2B	Normal Forms for Vector Fields with Parameters	220
		2.2C	Normal Forms for Maps	225
		2.2d	Conjugacies and Equivalences of Vector Fields	229
	2.3	Final I	Remarks	237
		Exercis	Ses	239
2	Lo	al Bifi	mationa	959
ა	LOG	ai Diit	incations	200
	3.1	Bifurca	ation of Fixed Points of Vector Fields	253
		3.1A	A Zero Eigenvalue	254
		3.1в	A Pure Imaginary Pair of Eigenvalues: The	
			Poincaré–Andronov–Hopf Bifurcation	270
		3.1c	Stability of Bifurcations Under Perturbations	278
		3.1d	The Idea of the Codimension of a Bifurcation Appendix 1: Versal Deformations of Families	284
			of Matrices	305
		$3.1\mathrm{E}$	The Double-Zero Eigenvalue	321
		3.1F	A Zero and a Pure Imaginary Pair of Eigenvalues	331
	3.2	Bifurca	ations of Fixed Points of Maps	357
		3.2A	An Eigenvalue of 1	358
		3.2B	An Eigenvalue of -1	371
		3.2C	A Pair of Eigenvalues of Modulus 1:	
			The Naimark–Sacker Bifurcation	374
		3.2d	The Codimension of Local Bifurcations of Maps	381
	3.3	On the	e Interpretation and Application of Bifurcation	
		Diagra	ms: A Word of Caution	384
		Exercis	ses	386

4	Sor	ne Ası	pects of Global Bifurcation	
	and	l Chao)S	420
	41	The S	male Horseshoe	420
	1.1	4.1A	Definition of the Smale Horseshoe Map	421
		4.1B	Construction of the Invariant Set	423
		4.1c	Symbolic Dynamics	430
		4.1p	The Dynamics on the Invariant Set	433
		4.1E	Chaos	436
	4.2	Symbo	olic Dynamics	438
		4.2A	The Structure of the Space of Symbol Sequences	439
		4.2в	The Shift Map	442
	4.3	The C	Conley–Moser Conditions, or "How to Prove	
		That $:$	a Dynamical System is Chaotic"	443
		4.3A	The Main Theorem	444
		4.3B	Sector Bundles	458
		4.3C	Hyperbolic Invariant Sets	463
	4.4	Dynai	nics Near Homoclinic Points of Two-	
		Dimer	nsional Maps	470
	4.5	Melni	kov's Method for Homoclinic Orbits in Two-	
		Dimer	nsional, Time-Periodic Vector Fields	483
		$4.5 \mathrm{A}$	The General Theory	484
		4.5B	Poincaré Maps and the Geometry of the	
			Melnikov Function	505
		4.5C	Some Properties of the Melnikov Function	507
		4.5D	Relationship with the Subharmonic Melnikov	
			Function	509
		4.5E	Homoclinic and Subharmonic Bifurcations	511
		4.5F	Application to the Damped, Forced Duffing Oscillator	513
	4.0	C		510
	4.0	Geom	Dire and Labor	519
		4.0A	Pips and Lodes	521 FOC
		4.0B	Transport in Phase Space	020 525
		4.0C	Technical Details	232
		4.0D	Application to the Melnikov Theory to Transport	538

4.7	Homoclinic Bifurcations: Cascades of Period-Doublin and Saddle-Node Bifurcations	g 540	
4.8	Orbits Homoclinic to Hyperbolic Fixed Points in		
	Three-Dimensional Autonomous Vector Fields		
	4.8A Orbits Homoclinic to a Saddle-Point with Pu	\mathbf{rely}	
	Real Eigenvalues	556	
	4.8B Orbits Homoclinic to a Saddle-Focus	573	
4.9	Global Bifurcations Arising from Local		
	Codimension-Two Bifurcations	591	
	4.9A The Double-Zero Eigenvalue	592	
	4.9B A Zero and a Pure Imaginary Pair of		
	Eigenvalues	595	
4.10) Liapunov Exponents	603	
4.11	Chaos and Strange Attractors	608	
	Exercises	616	
Bibliog	graphy	651	
Index		667	