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Preface 

As the title suggests, this book is concerned with the elementary portion 
of the subject of homotopy theory. It is assumed that the reader is familiar 
with the fundamental group and with singular homology theory, including 
the Universal Coefficient and Kiinneth Theorems. Some acquaintance with 
manifolds and Poincare duality is desirable, but not essential. 

Anyone who has taught a course in algebraic topology is familiar with 
the fact that a formidable amount of technical machinery must be 
introduced and mastered before the simplest applications can be made. This 
phenomenon is also observable in the more advanced parts of the subject. 
I have attempted to short-circuit it by making maximal use of elementary 
methods. This approach entails a leisurely exposition in which brevity and 
perhaps elegance are sacrificed in favor of concreteness and ease of 
application. It is my hope that this approach will make homotopy theory 
accessible to workers in a wide range of other subjects-subjects in which 
its impact is beginning to be felt. 

It is a consequence of this approach that the order of development 
is to a certain extent historical. Indeed, if the order in which the results 
presented here does not strictly correspond to that in which they were 
discovered, it nevertheless does correspond to an order in which they 
might have been discovered had those of us who were working in the area 
been a little more perspicacious. 

Except for the fundamental group, the subject of homotopy theory had 
its inception in the work of L. E. J. Brouwer, who was the first to define the 
degree of a map and prove its homotopy invariance. This work is by now 
standard in any beginning treatment of homology theory. More subtle is the 
fact that, for self-maps of the n-sphere, the homotopy class of a map is 
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V 111 Preface 

characterized by its degree. An easy argument shows that it is sufficient to 
prove that any map of degree zero is homotopic to a constant map. The 
book begins, after a few pages of generalities, with Whitney's beautiful 
elementary proof of this fact. It may seem out of place to include a detailed 
proof so early in an introductory chapter. I have done so for two reasons: 
firstly, in order to have the result ready for use at the appropriate time, 
without breaking the line of thought; secondly, to emphasize the point (if 
emphasis be needed) that algebraic topology does not consist solely of the 
juggling of categories, functors and the like, but has some genuine 
geometric content. 

Most of the results of elementary homotopy theory are valid in an 
arbitrary category of topological spaces. If one wishes to penetrate further 
into the subject, one encounters difficulties due to the failure of such 
properties as the exponential law, relating cartesian products and function 
spaces, to be universally valid. It was Steenrod who observed that, if one 
remains within the category of compactly generated spaces (this entails 
alteration of the standard topologies on products and function spaces), 
these difficulties evaporate. For this reason we have elected to work within 
this category from the beginning. 

A critical role in homotopy theory is played by the homotopy extension 
property. Equally critical is the "dual ", the homotopy lifting property. 
This notion is intimately connected with that of fibration. In the literature 
various notions of fibrations have been considered, but the work of 
Hurewicz has led to the" correct" notion: a fibre map is simply a continuous 
map which has the homotopy lifting property for arbitrary spaces. 

The first chapter of the present work expounds the notions of the last 
three paragraphs. In Chapter II, relative CW-complexes are introduced. 
These were introduced, in their absolute form, by J. H. C. Whitehead, and 
it is clear that they supply the proper framework within which to study 
homotopy theory, particularly obstruction theory. 

Chapter III is a "fun" chapter. After presenting evidence of the desirability 
of studying homotopy theory in a category of spaces with base points, the 
"dual" notions of H-spaces and H'-spaces are introduced. A space X is an 
H -space if and only if the set [Y, X] of homotopy classes of maps of Y 
into X admits a law of composition which is natural with respect to maps 
of the domain; the definition of H'-space is strictly dual. H-spaces are 
characterized by the property that the folding map X v X ---> X can be 
extended over X x X, while H'-spaces are characterized by the com­
,pressibility of the diagonal map X ---> (X x X, X v X). The most important 
H'-spaces are the spheres, and the set [sn, Y] = 1'l:n(Y) has a natural group 
structure, which is abelian if n ~ 2. 

Chapter IV takes up the systematic study of the homotopy groups 1'l:n(Y)' 
Relative groups are introduced, and an exact sequence for the homotopy 
groups of a pair is established. Homotopy groups are seen to behave in 
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many respects like homology groups; this resemblance is pointed up by 
the Hurewicz map, a homomorphism p: 7rn(X) ~ Hn(X), The Hurewicz 
Theorem, which asserts that p is an isomorphism if X is (n - 1 )-connected, 
is proved. Homotopy groups behave particularly well for fibrations, and this 
fact facilitates the calculation of the first few homotopy groups of the 
classical groups. 

The fifth chapter is devoted to the homotopy properties of CW­
complexes. The first half of the chapter is inspired by the work of J. H. C. 
Whitehead. The effect on the homotopy groups of the adjunction of a cell, 
or, more generally, the adjunction of a collection of cells of the same 
dimension, is considered. This allows one to construct a CW-complex with 
given homotopy groups. Moreover, if X is an arbitrary space, there is a 
CW-complex K and a map f : K ~ X which induces isomorphisms of the 
homotopy groups in all dimensions; i.e.,! is a weak homotopy equivalence. 
Such a map is called a CW-approximation, and it induces isomorphisms of 
the homology groups as well. The device of CW-approximations allows 
one to replace the study of arbitrary spaces by that of CW-complexes. 

The second part of Chapter V is concerned with obstruction theory. 
This powerful machinery, due to Eilenberg, is concerned with the extension 
problem: given a relative CW-complex (X, A) and a map f : A ~ Y, does 
there exist an extension g: X ~ Y of f? This problem is attacked by a 
stepwise extension process: supposing that f has an extension gn over the 
n-skeleton Xn of (X, A), one attempts to extend gn over Xn+ l' The attempt 
leads to an (n + 1)-cochain cn + 1 of (X, A) with coefficients in the group 
7rn(Y)' The fundamental property of the obstruction cochain en + 1 is that 
it is a cocycle whose cohomology class vanishes if and only if it is possible 
to alter gn on the n-cells, without changing it on the (n - 1 )-skeleton, in 
such a way that the new map can be extended over X n + l' 

One can obtain further results by making simplifying assumptions on 
the spaces involved. One of the most important is the Hopf-Whitney 
Extension Theorem: if Yis (n - 1)-connected and dim (X, A) ~ n + 1, then 
the extension problem 

A f. Y 
if 

i~ /,/ 
X/ 

has a solution if and only if the algebraic problem 
f* 

W(A; IT) .... ---=---- W(Y; IT) 

i*l 
W(X; IT) --­

has a solution (IT = 7rn(Y))' 
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Another important application occurs when Y is an Eilenberg-Mac Lane 
space K(II, n), i.e., 1ti(Y) = 0 for all i =F n. In this case, if X is an arbitrary 
CW-complex, then [X, Y] is in one-to-one correspondence with the group 
Hn(x; II). In other words, the functor Hn( ; II) is representable. 

The problem of finding a cross-section of a fibration p : X --+ B whose 
base space is a connected CW-complex can be attacked by similar methods. 
Iff: Bn --+ X is a cross-section over Bn, the problem of extendingf over an 
(n + I)-cell Ea gives rise to an element cn+ 1(ea) E 1tn(Fa), where Fa is the 
fibre p-1(xa) over some point ba E Ea. Now if bo and b1 are points of B, 
the fibres Fi = p-l(b;} have isomorphic homotopy groups; but the iso­
morphism is not unique, but depends on the choice of a homotopy class 
of paths in B from bo to b1. Thus ~ + 1 is not a cochain in the usual 
sense. The machinery necessary to handle this more general situation is 
provided by Steenrod's theory of homology with local coe'/ficients. A system 
G of local coefficients in a space B assigns to each b E B an abelian group 
G(b) and to each homotopy class ~ of paths joining bo and b1 an isomorphism 
G(O: G(bd --+ G(bo)· These are required to satisfy certain conditions which 
can be most concisely expressed by the statement that G is a functor 
from the fundamental groupoid of B to the category of abelian groups. 
To each space B and each system G of local coefficients in B there are 
then associated homology groups Hn(B; G) and cohomology groups 
W(B; G). These have properties very like those of ordinary homology and 
cohomology groups, to which they reduce when the coefficient system G 
is simple. These new homology groups are studied in Chapter VI. An 
important theorem of Eilenberg asserts that if B has a universal covering 
space B, the groups Hn(B; G) are isomorphic with the equivariant homology 
and cohomology groups of B with ordinary coefficients in Go = G(bo). 

Having set up the machinery of cohomology with local coefficients the 
appropriate obstruction theory can be set up without difficulty; the 
obstructions ~ + 1 are cochains with coefficients in the system nn(~) of 
homotopy groups of the fibres. Results parallel to those of obstruction 
theory can then be proved. As an application, one may consider the 
universal bundle for the orthogonal group On, whose base space is the 
Grassmannian of n-planes in ROO. There are associated bundles whose 
fibres are the Stiefel manifolds V n. k' and the primary obstructions to the 
existence of cross-sections in these bundles are the Whitney characteristic 
classes. 

If F --+ X --+ B is a fibration, the relationships among the homotopy 
groups of the three spaces are expressed by an exact sequence. The behavior 
of the homology groups is much more complicated. In Chapter VII we 
study the behavior of the homology groups in certain cases which, while 
they are very special, nevertheless include a number of very important 
examples. In the first instance we assume that B is the suspension of a space 
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Wand establish an exact sequence, the generalized Wang sequence, which 
expresses certain important relations among the homology groups of F, X 
and W When X is contractible this allows us to calculate the homology 
groups of F by an induction on the dimension. When the coefficient group 
is a field, the result can be expressed by the statement that H*(F) is the 
tensor algebra over the graded vector space H*(W). The way the tensor 
algebra over a module M is built up out of M has its geometric analogue 
in the reduced product of James. Indeed, if X is a space with base point 
e, one forms the reduced product J(X) by starting with the space of finite 
sequences of points of X and identifying two sequences if one can be 
obtained from the other by a finite number of insertions and deletions of 
the base point. The natural imbedding of X in nsx then extends to a map 
of J(X) into nsx which is a weak homotopy equivalence. In particular, if 
X is a CW-complex, then J(X) is a CW-approximation to nsx. 

The case when B is a sphere is of special interest because the classical 
groups admit fibrations over spheres. The Wang sequence then permits us 
to calculate the cohomology rings (in fact, the cohomology Hopf algebras) 
for the most important coefficient domains. 

Another case of special interest is that for which the fibre F is a sphere. 
When the fibration is orient able there is a Thorn isomorphism Hq(B) ~ 
Hq+n+l(x, X), where X is the mapping cylinder of p. This leads to the 
Gysin sequence relating the cohomology groups of B and of X. 

While the homology groups of F, X and B do not fit together to form 
an exact sequence, they do so in a certain range of dimensions. Specifically, 
if F is (m - 1)-connected and B is (n - I)-connected, then p*: Hq(X, F)-+ 
Hq(B) is an isomorphism for q < m + n and an epimorphism for q = m + n. 
From this fact the desired exact sequence is constructed just as in the case 
of homotopy groups. This result is due to Serre; an important application 
is the Homotopy Excision Theorem of Blakers and Massey. To appreciate 
this result, let us observe that the homotopy groups do not have the 
Excision Property; i.e., if (X; A, B) is a (nice) triad and X = A u B, the 
homomorphism 

i* : 7rq(B, A (\ B) -+ 7rq(X, A) 

induced by the inclusion map i is not, in general, an isomorphism. However, 
if (A, A (\ B) is m-connected and (B, A (\ B) in n-connected, then i* is an 
isomorphism for q < m + n and an epimorphism for q = m + n. The fact 
that this result can be deduced from the Serre sequence is due to Namioka. 
As a special case we have the Freudenthal Suspension Theorem: the 
homomorphism E: 7rq(sn) -+ 7rq + 1 (sn + 1) induced by the suspension 
operation is an isomorphism for q < 2n - 1 and an epimorphism for 
q = 2n - 1. 

In Chapter V it was shown that the cohomology functor Hn( n) 
has a natural representation as [ ,K(n, n)]. In a similar way, the natural 
transformations Hn( ; n) -+ Hq( ; G) correspond to homotopy classes of 
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maps between their representing spaces, i.e., to [K(II, n), K(G, q)] ~ 
Hq(K(II, n); G). These cohomology operations are the object of study in 
Chapter VIII. Because the suspension H'+l(SX; A)~H'(X; A) is an 
isomorphism, each operation e: Hn( ; II) ~ Hq( ; G) determines a new 
operation Hn- 1 ( ; II) ...... Hq-l( ; G), called the suspension of e. By the 
remarks above the suspension can be thought of as a homomorphism 
0'* : Hq(II, n; G) ...... Hq- 1 (II, n - 1; G). Interpreting this homomorphism in 
the context of the path fibration 

K(II, n - 1) = QK(II, n) ~ PK(II, n) ...... K(II, n), 

we deduce from the Serre exact sequence that 0'* is an isomorphism for 
q < 2n and a monomorphism for q = 2n. Indeed, the homomorphisms 0'* 

can be imbedded in an exact sequence, valid in dimensions through 3n. 
The remaining groups in the sequence are cohomology groups of 
K(II, n) /\ K(II, n), and interpretation of the remaining homomorphisms 
in the sequence yields concrete results on the kernel and cokernel of 0'*. 

Examples of cohomology operations are the mod 2 Steenrod squares. 
They are a sequence of stable cohomology operations Sqi (i = 0, 1, ... ). 
These are characterized by a few very simple properties. More sophisticated 
properties are due to Cartan and to Adem. The former are proved in 
detail; as for the latter, only a few instances are proved. With the aid of 
these results it follows that the Hopf fibrations s2n-l ...... S" and their iterated 
suspensions are essential; moreover, certain composites (for example 
S" + 2 ~ S" + 1 ...... sn) of iterated Hopf maps are also. 

Chapter VIII concludes with the calculation of the Steenrod operations 
in the cohomology of the classical groups (and the first exceptional group 
G 2 )· 

If X is an arbitrary (O-connected) space and N a positive integer, one 
can imbed X in a space X N in such a way that (XN, X) is an (N + 1)­
connected relative CW-complex and nq(XN) = 0 for all q> N. The pair 
(XN, X) is unique up to homotopy type (rei. X); and the inclusion map 
X <::+ X N + 1 can be extended to a map of X N + 1 into XN, which is 
homotopically equivalent to a fibration having an Eilenberg-Mac Lane 
space K( nN + 1 (X), N + 1) as fibre. The space X N + 1 can be constructed from 
X N with the aid of a certain cohomology class kN + 2 E HN + 2(XN; nN + 1 (X)). 
The system {XN, kN+2} is called a Postnikov system for X, and the space 
X is determined up to weak homotopy type by its Postnikov system. The 
Postnikov system of X can be used to give an alternative treatment of 
obstruction theory for maps into X. These questions are treated in 
Chapter IX. 

In Chapter X we return to the study of H-spaces. However, further 
conditions are imposed, in that the group axioms are assumed to hold up 
to homotopy. For such a space X the set [Y, X] is a group for every Y 
This group need not be abelian. However, under reasonable conditions it 
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is nilpotent, and its nilpotency class is intimately related to the Lusternik­
Schnirelmann category of Y. Of importance in studying these groups is the 
Samelson product. If f: Y -> X and g: Z -> X are maps, then the 
commutator map 

(y, z)-> (J(y)g(Z))(J(ytlg(ztl) 
of Y x Z into X is nullhomotopic on Y v Z and therefore determines a 
well-defined homotopy class of maps of Y ;\ Z into X. When Yand Z are 
spheres, so is Y ;\ Z, and we obtain a bilinear pairing np(X) ® nq(X)-> 
np+q(X). This pairing is commutative (up to sign) but is not associative. 
Instead one has a kind of Jacobi identity with signs. 

Suppose, in particular, that X is the loop space of a space W Then the 
isomorphisms nr - I (X) ~ nr(W) convert the Samelson product in X to a 
pairing np(W) ® nq(W) -> np+q_1 (W). This pairing is called the Whitehead 
product after its inventor, J. H. C. Whitehead, and the algebraic properties 
already deduced for the Samelson product correspond to like properties for 
that of Whitehead. Chapter X then concludes with a discussion of the 
relation between the Whitehead product and other operations in homotopy 
groups. 

Chapter XI is devoted to homotopy operations. These are quite analogous 
to the cohomology operations discussed earlier. Universal examples for 
operations in several variables are provided by clusters of spheres 

~ = snl v··· V snk. 

Indeed, each element !X E nn(~) determines an operation floc: nnl x ... x nnk -> 

nn as follows. If !Xi E nn,(X) is represented by a map /;: sn, -> X 
(i = 1, ... , k), then the mapsj; together determine a map f : ~ -> X. We then 
define Oa(!Xb ... , !Xk) = f*(!X). And the map !X -> Oa is easily seen to be a 
one-to-one correspondence between nn(~) and the set of all operations 
having the same domain and range as Oa. 

Thus it is of importance to study the homotopy groups of a cluster 
of spheres. This was done by Hilton, who proved the relation 

00 

r= 1 

where {nr} is a sequence of integers tending to 00. The inclusion 
nn(sn,) -> nn(~) is given by /3 ->!Xr 0/3, where !Xr E nn,(~) is an iterated 
Whitehead product of the homotopy classes I j of the inclusion maps snJ c+ ~ 
(j = 1, ... , k). Hilton's theorem was generalized by Milnor in that the 
spheres sn, were replaced by arbitrary suspensions SX i . Then ~ has to be 
replaced by SX, where X = XIV··· V X k . The Hilton-Milnor Theorem 
then asserts that if the spaces Xi are connectp.d CW-complexes, then J(X) 
has the same homotopy type as the (weak) cartesian product 

00 n J(Xr ), 
r=1 
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where X r is an itered reduced join of copies of XI' ... , X k' The isomorphism 
in question is induced by a certain collection of iterated Samelson products. 

One consequence of the Hilton Theorem is an analysis of the algebraic 
properties of the composition operation. The map (IX, P) -+ P 0 IX (IX E 1tn{sr), 
P E 1tr{X)) is clearly additive in IX, but it is not, in general, additive in p. 
The universal example here is P = 11 + 12, where 11 and 12 are the 
homotopy classes of the inclusions sr -+ sr V sr. Application of the Hilton 
Theorem and naturality show that, if PI' P2 E 1tr{X), then 

00 

(PI + (2) 0 IX = PI 0 IX + P2 0 IX + L W j {Pl' (2)" hj{IX), 
j=O 

where Wj{Pb (2) is a certain iterated Whitehead product and hj : 1tn{sr)-+ 
1tn{sni ) is a homomorphism, the /h Hopf-Hilton homomorphism. 

The suspension operation induces a map of [X, Y] into [SX, SY] for any 
spaces X, Y. We can iterate the procedure to obtain an infinite sequence 

[X, Y] -+ [SX, SY] -+ [S2X, S2Y] -+ ... -+ [snx, sny] -+ ... 

in which almost all of the sets involved are abelian groups and the maps 
homomorphisms. Thus we may form the direct limit 

{X, Y} = lim [snx, sny]; 
7 

it is an abelian group whose elements are called S-maps of X into Y. In 
particular, if X = sn, we obtain the d h stable homotopy group O'n{Y) = {sn, Y}. 

We have seen that the homotopy and homology groups have many 
properties in common. The resemblance between stable homotopy groups 
and homology groups is even closer. Indeed, upon defining relative groups 
in the appropriate way, we see that they satisfy all the Eilenberg-Steenrod 
axioms for homology theory, except for the Dimension Axiom. 

Examination of the Eilenberg-Steenrod axioms reveals that the first six 
axioms have a very general character, while the seventh, the Dimension 
Axiom, is very specific. In fact, it plays a normative role, singling out 
standard homology theory from the plethora of theories which satisfy the 
first six. That it is given equal status with the others is no doubt due to the 
fact that very few interesting examples of non-standard theories were 
known. But the developments of the last fifteen or so years has revealed the 
existence of many such theories: besides stable homotopy, one has the 
various K-theories and bordism theories. 

Motivated by these considerations, we devote the remainder of Chapter 
XII to a discussion of homology theories without the dimension axiom. 
The necessity of introducing relative groups being something of a nuisance, 
we avoid it by reformulating the axioms in terms of a category of spaces 
with base point, rather than a category of pairs. The two approaches to 
homology theory are compared and shown to be completely equivalent. 



Preface xv 

The book might well end at this point. However, having eschewed the 
use of the heavy machinery of modern homotopy, lowe the reader a sample 
of things to come. Therefore a final chapter is devoted to the Leray-Serre 
spectral sequence and its generalization to non-standard homology theories. 
If F ---> X ---> B is a fibration whose base is a CW -complex, the filtration of 
B by its skeleta induces one of X by their counterimages. Consideration 
of the homology sequences of these subspaces of X and their interrelations 
gives rise, following Massey, to an exact couple; the latter, in turn gives 
rise to a spectral sequence leading from the homology of the base with 
coefficients in the homology of the fibre to the homology of the total space. 
Some applications are given and the book ends by demonstrating the 
power of the machinery with some qualitative results on the homology of 
fibre spaces and on homotopy groups. 

As I have stated, this book has been a mere introduction to the subject 
of homotopy theory. The rapid development of the subject in recent years 
has been made possible by more powerful and sophisticated algebraic 
techniques. I plan to devote a second volume to these developments. 

The results presented here are the work of many hands. Much of this 
work is due to others. But mathematics is not done in a vacuum, and 
each of us must recognize in his own work the influence of his predecessors. 
In my own case, two names stand out above all the rest: Norman Steenrod 
and J. H. C. Whitehead. And I wish to acknowledge my indebtedness to 
these two giants of our subject by dedicating this book to their memory. 

I also wish to express my indebtedness to my friends and colleagues 
Edgar H. Brown, Jr., Nathan Jacobson, John C. Moore, James R. Munkres, 
Franklin P. Peterson, Dieter Puppe, and John G. Ratcliffe, for reading 
portions of the manuscript and/or cogent suggestions which have helped 
me over many sticky points. Thanks are also due to my students in several 
courses based on portions of the text, particularly to Wensor Ling and 
Peter Welcher, who detected a formidable number of typographical errors 
and infelicities of style. 

Thanks are also due to Miss Ursula Ostneberg for her cooperation in 
dealing with the typing of one version after another of the manuscript, and 
for the fine job of typing she has done. 

This book was begun during my sabbatical leave from M.I.T. in the 
spring term of 1973. I am grateful to Birkbeck College of London 
University for providing office space and a congenial environment. 

There remains but one more acknowledgment to be made: to my wife, 
Kathleen B. Whitehead, not merely for typing the original version of the 
manuscript, but for her steady encouragement and support, but for which 
this book might never have been completed. 

Massachusetts Institute of Technology 
June, 1978. 

GEORGE W. WHITEHEAD 
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