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To My Parents 



Preface to the Second Edition 

Since the publication of the first edition, several remarkable developments 
have taken place. The work of Thaine, Kolyvagin, and Rubin has produced 
fairly elementary proofs of Ribet's converse of Herbrand's theorem and of the 
Main Conjecture. The original proofs of both of these results used delicate 
techniques from algebraic geometry and were inaccessible to many readers. 
Also, Sinnott discovered a beautiful proof of the vanishing of Iwasawa's 
Jl-invariant that is much simpler than the one given in Chapter 7. Finally, 
Fermat's Last Theorem was proved by Wiles, using work of Frey, Ribet, 
Serre, Mazur, Langlands-Tunnell, Taylor-Wiles, and others. Although the 
proof, which is based on modular forms and elliptic curves, is much different 
from the cyclotomic approaches described in this book, several of the ingredi­
ents were inspired by ideas from cyclotomic fields and Iwasawa theory. 

The present edition includes two new chapters covering some of these 
developments. Chapter 15 treats the work of Thaine, Kolyvagin, and Rubin, 
culminating in a proof of the Main Conjecture for the pth cyclotomic field. 
Chapter 16 includes Sinnott's proof that Jl = 0 and his elementary proof of 
the corresponding result on the t-part of the class number in a Zp-extension. 
Since the application of Jacobi sums to primality testing was too beautiful to 
omit, I have also included it in this chapter. 

The first 14 chapters have been left essentially unchanged, except for 
corrections and updates. The proof of Fermat's Last Theorem, which is far 
beyond the scope of the present book, makes certain results of these chapters 
obsolete. However, I decided to let them remain, for they are interesting not 
only from an historical viewpoint but also as applications of various tech­
niques. Moreover, some of the results of Chapter 9 apply to Vandiver's 
conjecture, one of the major unresolved questions in the field. For aesthetic 
reasons, it might have been appropriate to put the new Chapter 15 immedi-

vii 



viii Preface to the Second Edition 

ately after Chapter 13. However, I opted for the more practical route of 
placing it after the Kronecker-Weber theorem, thus ensuring that all num­
bering from the first edition is compatible with the second. 

Other changes from the first edition include updating the bibliography 
and the addition of a table of class numbers of real cyclotomic fields due to 
Schoof. 

Many people have sent me detailed lists of corrections and suggestions or 
have contributed in other ways to this edition. In particular, I would like to 
thank Brian Conrad, Keith Conrad, Li Guo, Mikihito Hirabayashi, Jim 
Kraft, Tauno Metsankyla, Ken Ribet, Yuan-Yuan Shen, Peter Stevenhagen, 
Patrick Washington, and Susan Zengerle. 

Lawrence C. Washington 



Preface to the First Edition 

This book grew out of lectures given at the University of Maryland in 
1979/1980. The purpose was to give a treatment of p-adic L-functions and 
cyclotomic fields, including Iwasawa's theory of Zp-extensions, which was 
accessible to mathematicians of varying backgrounds. 

The reader is assumed to have had at least one semester of algebraic 
number theory (though one of my students took such a course concurrently). 
In particular, the following terms should be familiar: Dedekind domain, 
class number, discriminant, units, ramification, local field. Occasionally one 
needs the fact that ramification can be computed locally. However, one who 
has a good background in algebra should be able to survive by talking to the 
local algebraic number theorist. I have not assumed class field theory; the 
basic facts are summarized in an appendix. For most of the book, one only 
needs the fact that the Galois group of the maximal unramified abelian 
extension is isomorphic to the ideal class group, and variants of this state­
ment. 

The chapters are intended to be read consecutively, but it should be 
possible to vary the order considerably. The first four chapters are basic. 
After that, the reader willing to believe occasional facts could probably read 
the remaining chapters randomly. For example, the reader might skip 
directly to Chapter 13 to learn about Zp-extensions. The last chapter, on 
the Kronecker-Weber theorem, can be read after Chapter 2. 

The notations used in the book are fairly standard; Z, C, Zp, and C p 
denote the integers, the rationals, the p-adic integers, and the p-adic rationals, 
respectively. If A is a ring (commutative with identity), then A x denotes its 
group of units. At Serge Lang's urging I have let the first Bernoulli number 
be Bl = -t rather than +t. This disagrees with Iwasawa [23] and several 
of my papers, but conforms to what is becoming standard usage. 
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x Preface to the First Edition 

Throughout the preparation of this book I have found Serge Lang's two 
volumes on cyclotomic fields very helpful. The reader is urged to look at 
them for different viewpoints on several of the topics discussed in the present 
volume and for a different selection of topics. The second half of his second 
volume gives a nice self-contained (independent of the remaining one and a 
half volumes) proof of the Gross-Koblitz relation between Gauss sums and 
the p-adic gamma function, and the related formula of Ferrero and Green­
berg for the derivative of the p-adic L-function at 0, neither of which I have 
included here. I have also omitted a discussion of explicit reciprocity laws. 
For these the reader can consult Lang [4], Hasse [2], Henniart, Ireland­
Rosen, Tate [3], or Wiles [ll 

Perhaps it is worthwhile to give a very brief history of cyclotomic fields. 
The subject got its real start in the 1840s and 1850s with Kummer's work on 
Fermat's Last Theorem and reciprocity laws. The basic foundations laid 
by Kummer remained the main part of the theory for around a century. 
Then in 1958, Iwasawa introduced his theory of Zp-extensions, and a few 
years later Kubota and Leopoldt invented p-adic L-functions. In a major 
paper (Iwasawa [18]), Iwasawa interpreted these p-adic L-functions in terms 
of Zp-extensions. In 1979, Mazur and Wiles proved the Main Conjecture, 
showing that p-adic L-functions are essentially the characteristic power series 
of certain Galois actions arising in the theory of Zp-extensions. 

What remains? Most of the universally accepted conjectures, in particular 
those derived from analogy with function fields, have been proved, at least 
for abelian extensions of 0. Many of the conjectures that remain are proba­
bly better classified as "open questions," since the evidence for them is not 
very overwhelming, and there do not seem to be any compelling reasons to 
believe or not to believe them. The most notable are Vandiver's conjecture, 
the weaker statement that the p-Sylow subgroup of the ideal class group of 
the pth cyclotomic field is cyclic over the group ring of the Galois group, and 
the question of whether or not A. = 0 for totally real fields. In other words, we 
know a lot about imaginary things, but it is not clear what to expect in the 
real case. Whether or not there exists a fruitful theory remains to be seen. 

Other possible directions for future developments could be a theory of 
Z-extensions (Z = n Zp; some progress has recently been made by Friedman 
[1]), and the analogues ofIwasawa's theory in the elliptic case (Coates-Wiles 
[4]). 

I would like to thank Gary Cornell for much help and many excellent 
suggestions during the writing of this book. I would also like to thank John 
Coates for many helpful conversations concerning Chapter 13. This chapter 
also profited greatly from the beautiful courses of my teacher, Kenkichi 
Iwasawa, at Princeton University. Finally, I would like to thank N.s.F. 
and the Sloan Foundation for their financial support and I.H.E.S. and the 
University of Maryland for their academic support during the writing of this 
book. 

Lawrence C. Washington 
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