Gerard Walschap

Metric Structures in Differential Geometry

With 15 Figures

Gerard Walschap Department of Mathematics University of Oklahoma Norman, OK 73019-0315 USA gerard@math.ou.edu

Editorial Board:

S. Axler
Mathematics Department
San Francisco State
University
San Francisco, CA 94132
USA
axler@sfsu.edu

F.W. Gehring
Mathematics Department
East Hall
University of Michigan
Ann Arbor, MI 48109
USA
fgehring@math.lsa.umich.edu

K.A. Ribet
Mathematics Department
University of California,
Berkeley
Berkeley, CA 94720-3840
USA
ribet@math.berkeley.edu

Mathematics Subject Classification (2000): 53-xx, 58Axx, 57Rxx

Library of Congress Cataloging-in-Publication Data Walschap, Gerard, 1954–

Metric structures in differential geometry/Gerard Walschap.

p. cm.

Includes bibliographical references and index.

ISBN 978-1-4419-1913-7 ISBN 978-0-387-21826-7 (eBook)

DOI 10.1007/978-0-387-21826-7

1. Geometry, Differential. I. Title.

QA641.W327 2004 516.3'6—dc22

2003066219

Printed on acid-free paper.

© 2004 Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 2004 Softcover reprint of the hardcover 1st edition 2004

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

(EB)

987654321

SPIN 10958674

Springer-Verlag is a part of Springer Science+Business Media

Contents

Preface	V
Chapter 1. Differentiable Manifolds	1
1. Basic Definitions	1
2. Differentiable Maps	5
3. Tangent Vectors	6
4. The Derivative	8
5. The Inverse and Implicit Function Theorems	11
6. Submanifolds	12
7. Vector Fields	16
8. The Lie Bracket	19
9. Distributions and Frobenius Theorem	27
10. Multilinear Algebra and Tensors	29
11. Tensor Fields and Differential Forms	35
12. Integration on Chains	41
13. The Local Version of Stokes' Theorem	43
14. Orientation and the Global Version of Stokes' Theorem	45
15. Some Applications of Stokes' Theorem	51
Chapter 2. Fiber Bundles	57
1. Basic Definitions and Examples	57
2. Principal and Associated Bundles	60
3. The Tangent Bundle of S^n	65
4. Cross-Sections of Bundles	67
5. Pullback and Normal Bundles	69
6. Fibrations and the Homotopy Lifting/Covering Properties	73
7. Grassmannians and Universal Bundles	75
Chapter 3. Homotopy Groups and Bundles Over Spheres	81
1. Differentiable Approximations	81
2. Homotopy Groups	83
3. The Homotopy Sequence of a Fibration	88
4. Bundles Over Spheres	94
5. The Vector Bundles Over Low-Dimensional Spheres	97
Chapter 4. Connections and Curvature	103
1. Connections on Vector Bundles	103
2. Covariant Derivatives	109
3. The Curvature Tensor of a Connection	114

viii CONTENTS

4.	Connections on Manifolds	120
5.	Connections on Principal Bundles	125
Chapt	er 5. Metric Structures	131
1.	Euclidean Bundles and Riemannian Manifolds	131
2.	Riemannian Connections	133
3.	Curvature Quantifiers	141
4.	Isometric Immersions	145
5.	Riemannian Submersions	147
6.	The Gauss Lemma	155
7.	Length-Minimizing Properties of Geodesics	160
8.	First and Second Variation of Arc-Length	166
9.	Curvature and Topology	171
10.	Actions of Compact Lie Groups	173
Chapt	er 6. Characteristic Classes	177
1.	The Weil Homomorphism	178
2.	Pontrjagin Classes	181
3.	The Euler Class	184
4.	The Whitney Sum Formula for Pontrjagin and Euler Classes	189
5.	Some Examples	191
6.	The Unit Sphere Bundle and the Euler Class	199
7.	The Generalized Gauss-Bonnet Theorem	203
8.	Complex and Symplectic Vector Spaces	207
9.	Chern Classes	215
Bibliography		221
Index		223