Contents

Preface		xi
Chapter 1.	Forms and Galois Cohomology	1
§1 G	roup schemes and their cohomology	
1.1	Group objects in a category	1
1.2	Group schemes	3
1.3	Affine groups, Hopf algebras	4
1.4	Group schemes over a field, algebraic groups	7
1.5	Frobenius morphisms	7
1.6	Diagonal groups	10
1.7	Characters of group schemes	11
1.8	Bicharacters	13
	Exactness of the functor D	14
	Galois cohomology	16
1.11	Sheaves and cohomology in the étale topology	17
1.12	Cartier divisors and Weil divisors	19
	he Brauer group of a projective variety	20
	The unramified Brauer group of a function field	20
2.2	The Kummer exact sequence	20
	The Tate group, the Picard number, the Lefschetz number	21
	he theory of k -forms	23
3.1	Forms and one-dimensional cohomology	23
	Splitting fields of a k-form	24
3.3	Forms of group schemes	25
	Groups of multiplicative type	25
3.5	Principal homogeneous spaces	27
	Projective groups and associated k -forms	29
	The Brauer group of a field	30
3.8	Chevalley groups	32
3.9	Semisimple groups	35
	Inner and outer forms	36
3.11	Almost simple semisimple groups	37
3.12	The Weil restriction	37
Chapter 2.	Birational Geometry of Algebraic Tori	41
	irational invariants of linear algebraic groups	41
4.1	The variety of maximal tori of a reductive group	41
4.2	Structure of the generic torus of a semisimple group	42

viii CONTENTS

4.3	The Picard group and the Brauer group of a linear algebraic	
	group	44
	Criteria for birational equivalence of algebraic varieties	46
	Projective models of linear algebraic groups	47
	Flasque resolutions of a module	49
	Stable equivalence	51
	Chevalley modules	52
	Tori of small dimension	57
	Tori with a biquadratic splitting field	58
	The semigroup of stable equivalence	59
	ori with a cyclic splitting field	60
	"Dévissage" of a quasi-split torus	60
	Invertibility of the Picard class	62
	The Chistov multiplication	62
	able rationality of varieties	65
	Stably rational tori as orbit varieties	65
	Covariants of linear representations	67
6.3	Rationality of tori of type pq	69
6.4	Universal torsors	71
6.5	Counterexamples to Zariski's conjecture	73
Chapter 3.	Invariants of Finite Transformation Groups	75
§7 Fi	elds of invariants of finite transformation groups	75
7.1	Fields of invariants and their models	75
7.2	Invariants of finite abelian groups	76
7.3	The fields $(k, p^{\alpha}), p > 2$	78
7.4	The fields $(k, 2^{\alpha})$	79
7.5	General case	79
7.6	Invariants of finite groups over an algebraically closed field	81
7.7	Invariants of finite linear groups	82
7.8	Invariants of finite groups acting on tori	85
7.9	Invariants of connected algebraic groups	87
	variant projective Demazure models	90
	Cones and fans	90
8.2	Projective invariant fans	93
8.3	Birational invariants of tori without affect	97
	The graded ring of a toric variety	99
Chapter 4.	Arithmetic of Linear Algebraic Groups	103
	ri over a finite field	103
9.1	Number of rational points	103
	Zeta function	104
§10 To	ri over local fields	106
-	Tori over reals	106
	Tori over a nonarchimedean field	107
	Integer structures in linear algebraic groups	107
	Canonical integer form of a quasisplit torus	109
	Canonical form of a norm torus	111
	ri over global fields	111
J O	O	111

CONTENTS

ix

11.1 Adele groups	111
11.2 Canonical integer model of a torus over a number field	113
11.3 Cohomology of adele groups	114
11.4 Descent of the ground field	118
11.5 Approximation problems	119
11.6 Arithmetical meaning of the birational invariant $H^1(k, p(T))$	120
§12 Arithmetic of semisimple groups	122
12.1 Cohomology of semisimple groups	122
12.2 Weak approximation	124
12.3 The group $H^1(k,\operatorname{Pic}\overline{X})$	125
$\S 13$ Artin L-functions	127
13.1 Partial Artin L-functions	127
13.2 Theorems of Artin and Brauer	129
13.3 Global zeta function of a torus	131
Chapter 5. Tamagawa Numbers	133
§14 Haar measure on adele groups	133
14.1 Product of local measures	133
14.2 Computation of local volumes	134
14.3 Canonical convergence factors	136
14.4 The Tamagawa measure	137
14.5 Properties of Tamagawa numbers	142
14.6 Tamagawa numbers of algebraic tori	142
14.7 The group Φ	147
14.8 Further development of the method	148
14.9 Chevalley group Z-schemes	148
14.10 Gindikin-Karpelevich integrals	149
14.11 Langlands' method of computing Tamagawa numbers	153
14.12 Elementary computations of volumes of some classical quotients	160
§15 The Minkowski-Siegel-Tamagawa formula	163
15.1 Infinite products	163
15.2 The weight of a genus of an odd positive lattice	165
15.3 The weight of a genus of an even positive unimodular lattice	169
15.4 Sums of squares	169
15.5 Sum of two squares	172
15.6 Sum of four squares	173
15.7 Sum of six squares	173
15.8 Sum of eight squares	174
15.9 Sum of three squares 15.10 Sum of five squares	174
	175
15.11 Sum of seven squares	176
Chapter 6. R-equivalence in Algebraic Groups	177
§16 The group of R-equivalence classes	177
16.1 First properties of <i>R</i> -equivalence on varieties	177
16.2 Birational invariance of <i>R</i> -equivalence in groups	179
§17 R-equivalence on algebraic tori	180
17.1 Flasque resolution of a torus and R-equivalence	180
LC & Some Special for	100

x CONTENTS

17.3 The group $T(k(t))$	184
§18 The unimodular group of a simple algebra	185
18.1 Reduction to the anisotropic kernel	185
18.2 The Whitehead group of a simple algebra	185
18.3 Platonov's examples	187
18.4 The Whitehead group of an isotropic group	188
18.5 R-equivalence over special fields	188
§19 Algebras with involutions and groups of adjoint type	190
19.1 Algebras with involutions	190
19.2 Indecomposable algebras with involutions	190
19.3 Automorphisms of indecomposable algebras with involutions	192
19.4 Forms of algebras with involutions	192
19.5 The covering of G_0	193
19.6 Merkurjev's theorems	194
Chapter 7. Index Formulas in Arithmetic of Algebraic Tori	197
§20 Arithmetic of the projective group of a field	197
20.1 Ratio of class numbers	197
20.2 Index formulas for quadratic extensions	200
20.3 The Hasse relations for an imaginary extension	201
§21 Arithmetic of a norm hypersurface	202
Bibliographical Remarks	207
Bibliography	211