5,56210

SMF/AMS TEXTS and MONOGRAPHS · Volume 1

Panoramas et Synthèses • Numéro 2 • 1996

Mirror Symmetry

Claire Voisin

Translated by Roger Cooke

American Mathematical Society Société Mathématique de France

Contents

Introduction		vii
Organization of the text		xviii
Acknowledgment		xviii
Note added in Translation		xix
Chapter 1. Calabi-Yau Manifolds		1
1. Yau's Theorem		1
2. The decomposition theorem		3
3. Smoothness of the local family of	of deformations	5
4. Smoothability of Calabi-Yau ma	anifolds with normal crossings	8
5. The period map		10
6. Calabi–Yau threefolds		14
Examples of Calabi–Yau manifo	lds	15
8. Mirrors		17
Chapter 2. "Physical" origin of the co	~	21
1. The $N = 2$ -supersymmetric σ -m	odel	21
2. Quantification		27
3. Gepner's conjecture		31
4. Mirror symmetry		32
5. The $N = 2$ -superconformal theorem	ry and Dolbeault cohomology	33
6. Witten's interpretation		35
Chapter 3. The Work of Candelas-de	la Ossa-Green-Parkes	39
 Special coordinates and Yukawa 	couplings	39
2. Degenerations		43
3. The Candelas-de la Ossa-Green	-Parkes calculation	48
4. Picard–Fuchs equations		50
5. Conclusion of the argument		54
Chapter 4. The work of Batyrev		57
1. Toric varieties		57
2. Weil and Cartier divisors		59
3. Polyhedra and toric varieties		60
4. Toric Fano varieties		62
5. Desingularization		63
6. Calculation of the cohomology o	$\widehat{Z_f}$	65
Chapter 5. Quantum cohomology		73
1. The formulation by Kontsevich a	and Manin	73

V

vi CONTENTS

2.	The work of Ruan and Tian	76
3.	Gromov-Witten potential	81
4.	Application to mirror symmetry	87
5.	Quantum product	88
6.	The calculation of Aspinwall and Morrison	89
Chap	ter 6. The Givental Construction	95
1.	Floer Cohomology	95
2.	The comparison theorem	101
3.	Quantum cohomology and Floer cohomology	102
4.	Equivariant cohomology	105
5.	The Givental construction	110
Biblio	ography	117