A Course in Algebra

E. B. Vinberg

Graduate Studies in Mathematics Volume 56

American Mathematical Society Providence, Rhode Island

Editorial Board

Walter Craig Nikolai Ivanov Steven G. Krantz David Saltman (Chair)

Э. Б. Винберг

КУРС АЛГЕБРЫ

"Факториал Пресс", Москва, 1999, 2001

Translated from the Russian by Alexander Retakh

This work was originally published in Russian by Factorial Press under the title, Kurs Algebry © 2001. The present translation was created under license for the American Mathematical Society and is published by permission.

2000 Mathematics Subject Classification. Primary 13-01, 15-01, 16-01, 20-01.

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-56

Library of Congress Cataloging-in-Publication Data

Vinberg, E. B. (Ernest Borisovich) [Kurs algebry. English]
A course in algebra / E. B. Vinberg.
p. cm. — (Graduate studies in mathematics, ISSN 1065-7339; v. 56) Includes bibliographical references and index.
ISBN 0-8218-3318-9 (acid-free paper) ISBN 0-8218-3413-4 (softcover)
1. Algebra. I. Title. II. Series.

QA154.3.V56 2003 512-dc21

2002033011

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department. American Mathematical Society, 201 Charles Street, Providence. Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

> © 2003 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America.

So The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 08 07 06 05 04 03

Contents

Preface	ix
Chapter 1. Algebraic Structures	1
§1.1. Introduction	1
§1.2. Abelian Groups	4
§1.3. Rings and Fields	7
§1.4. Subgroups, Subrings, and Subfields	10
§1.5. The Field of Complex Numbers	12
§1.6. Rings of Residue Classes	18
§1.7. Vector Spaces	23
§1.8. Algebras	27
§1.9. Matrix Algebras	30
Chapter 2. Elements of Linear Algebra	35
§2.1. Systems of Linear Equations	35
§2.2. Basis and Dimension of a Vector Space	43
§2.3. Linear Maps	53
§2.4. Determinants	64
§2.5. Several Applications of Determinants	76
Chapter 3. Elements of Polynomial Algebra	81
§3.1. Polynomial Algebra: Construction and Basic Properties	81
§3.2. Roots of Polynomials: General Properties	87
§3.3. Fundamental Theorem of Algebra of Complex Numbers	93

§3.4.	Roots of Polynomials with Real Coefficients	98
§3.5.	Factorization in Euclidean Domains	103
§3.6.	Polynomials with Rational Coefficients	109
§3.7.	Polynomials in Several Variables	112
§3.8.	Symmetric Polynomials	116
§3.9.	Cubic Equations	123
§3.10.	Field of Rational Fractions	129
Chapter	4. Elements of Group Theory	137
§4.1.	Definitions and Examples	137
§4.2.	Groups in Geometry and Physics	143
§4.3.	Cyclic Groups	147
§4.4.	Generating Sets	153
§4.5.	Cosets	155
§4.6.	Homomorphisms	163
Chapter	5. Vector Spaces	171
§5.1.	Relative Position of Subspaces	171
§5.2.	Linear Functions	176
§5.3.	Bilinear and Quadratic Functions	179
§5.4.	Euclidean Spaces	190
§5.5.	Hermitian Spaces	197
Chapter	6. Linear Operators	201
§6.1.	Matrix of a Linear Operator	201
§6.2.	Eigenvectors	207
§6.3.	Linear Operators and Bilinear Functions on Euclidean Space	212
§6.4.	Jordan Canonical Form	221
§6.5.	Functions of a Linear Operator	228
Chapter	7. Affine and Projective Spaces	239
§7.1.	Affine Spaces	239
§7.2.	Convex Sets	247
§7.3.	Affine Transformations and Motions	259
§7.4.	Quadrics	268
§7.5.	Projective Spaces	280
Chapter	8. Tensor Algebra	295

§8.1. Tensor Product of Vector Spaces	295
§8.2. Tensor Algebra of a Vector Space	302
§8.3. Symmetric Algebra	308
§8.4. Grassmann Algebra	314
Chapter 9. Commutative Algebra	325
§9.1. Abelian Groups	325
§9.2. Ideals and Quotient Rings	337
§9.3. Modules over Principal Ideal Domains	345
§9.4. Noetherian Rings	352
§9.5. Algebraic Extensions	356
§9.6. Finitely Generated Algebras and Affine Algebraic Varieties	367
§9.7. Prime Factorization	376
Chapter 10. Groups	385
§10.1. Direct and Semidirect Products	385
§10.2. Commutator Subgroup	392
§10.3. Group Actions	394
§10.4. Sylow Theorems	400
§10.5. Simple Groups	403
§10.6. Galois Extensions	407
§10.7. Fundamental Theorem of Galois Theory	412
Chapter 11. Linear Representations and Associative Algebras	419
§11.1. Invariant Subspaces	419
§11.2. Complete Reducibility of Linear Representations of Finite	420
S11.2 Finite Dimensional Association Algebras	400
g11.5. Finite-Dimensional Associative Algebras	404
g11.4. Linear representations of Finite Groups	442
911.5. Invariants	402
gii.o. Division Algebras	400
Chapter 12. Lie Groups	471
§12.1. Definition and Simple Properties of Lie Groups	472
§12.2. The Exponential Map	478
§12.3. Tangent Lie Algebra and the Adjoint Representation	482
§12.4. Linear Representations of Lie Groups	487
Answers to Selected Exercises	495

Bibliography	501
Index	503