James W. Vick
Homology Theory

An Introduction to
Algebraic Topology

Second Edition

Springer-Verlag




James W. Vick

Homology Theory

An Introduction to Algebraic Topology
Second Edition

With 78 Illustrations

Springer-Verlag
New York Berlin Heidelberg London Paris
Tokyo Hong Kong Barcelona Budapest



James W. Vick

Department of Mathematics

The University of Texas at Austin
Austin, TX 78713-7699

USA

Editorial Board

J.H. Ewing F.W. Gehring P.R. Halmos

Department of Department of Department of
Mathematics Mathematics Mathematics

Indiana University University of Michigan Santa Clara University

Bloomington, IN 47405 Ann Arbor, M1 48109 Santa Clara, CA 95053

USA USA USA

Mathematics Subject Classifications (1991): 55-01, 55N10, 57M 10

Library of Congress Cataloging-in-Publication Data
Vick, James W.
Homology theory: an introduction to algebraic topology 2nd ed / James W. Vick.
p. cm.—(Graduate texts in mathematics)
Originally published: New York: Academic Press, ¢1973. (Pure and
applied mathematics; v. 53).
Includes bibliographical references and index.
ISBN 0-387-94126-6 (New York: alk. paper).—ISBN 3-540-94126-6
(Berlin: alk. paper)
1. Homology theory. 1. Title. TII. Series.
QA612.3.V53 1994
514'.23—dc20 93-5255

Printed on acid-free paper.

The first edition of this book was published by Academic Press, New York, C 1973.

C 1994 Springer-Verlag New York Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New
York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis.
Use in connection with any form of information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed
1s forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if
the former are not especially identified, is not to be taken as a sign that such names, as under-
stood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by
anyone.

Production coordinated by TechEdit Production Services and managed by Natalie Johnson;
manufacturing supervised by Genieve Shaw.

Typeset by Asco Trade Typesetting Ltd., Hong Kong.

Printed and bound by R.R. Donnelley & Sons, Harrisonburg, VA.

Printed in the United States of America.

987654321

ISBN 0-387-94126-6 Springer-Verlag New York Berlin Heidelberg
ISBN 3-540-94126-6 Springer-Verlag Berlin Heidelberg New York
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Preface to the Second Edition

The 20 years since the publication of this book have been an era of continuing
growth and development in the field of algebraic topology. New generations
of young mathematicians have been trained, and classical problems have
been solved, particularly through the application of gcometry and knot
theory. Diverse new resources for introductory coursework have appeared,
but there is persistent interest in an intuitive treatment of the basic ideas.

This second edition has been expanded through the addition of a chapter
on covering spaces. By analysis of the lifting problem it introduces the funda-
mental group and explores its properties, including Van Kampen’s Theorem
and the relationship with the first homology group. It has been inserted after
the third chapter since it uses some definitions and results included prior to
that point. However, much of the material is directly accessible from the same
background as Chapter 1, so there would be some flexibility in how these
topics are integrated into a course.

The Bibliography has been supplemented by the addition of selected books
and historical articles that have appeared since 1973,

vii






Preface to the First Edition

During the past twenty-five years the field of algebraic topology has experi-
enced a period of phenomenal growth and development. Along with the
increasing number of students and researchers in the field and the expanding
areas of knowledge have come new applications of the techniques and results
of algebraic topology in other branches of mathematics. As a result there has
been a growing demand for an introductory course in algebraic topology
for students in algebra, geometry, and analysis, as well as for those planning
further work in topology.

This book is designed as a text for such a course as well as a source for
individual reading and study. Its purpose is to present as clearly and con-
cisely as possible the basic techniques and applications of homology theory.
The subject matter includes singular homology theory, attaching spaces and
finite CW complexes, cellular homology, the Eilenberg-Steenrod axioms,
cohomology, products, and duality and fixed-point theory for topological
manifolds. The treatment is highly intuitive with many figures to increase the
geometric understanding. Generalities have been avoided whenever it was
felt that they might obscure the essential concepts.

Although the prerequisites are limited to basic algebra (abelian groups)
and general topology (compact Hausdorff spaces), a number of the classical
applications of algebraic topology are given in the first chapter. Rather than
devoting an initial chapter to homological algebra, these concepts have been
integrated into the text so that the motivation for the constructions is more
apparent. Similarly the exercises have been spread throughout in order to
exploit techniques or reinforce concepts.

At the close of the book there are three bibliographical lists. The first
includes all works referenced in the text. The second is an extensive list of



X Preface to the First Edition

books and notes in algebraic topology and related fields, and the third is a
similar list of survey and expository articles. It was felt that these would
best serve the student, teacher, and reader in offering accessible sources for
further reading and study.
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CHAPTER 1

Singular Homology Theory

The purpose of this chapter is to introduce the singular homology theory of
an arbitrary topological space. Following the definitions and a proof of
homotopy invariance, the essential computational tool (Theorem 1.14) is
stated. Its proof is deferred to Appendix I so that the exposition need not be
interrupted by its involved constructions. The Mayer—Vietoris sequence is
noted as an immediate corollary of this theorem, and then applied to com-
pute the homology groups of spheres. These results are applied to prove a
number of classical theorems: the nonretractibility of a disk onto its bound-
ary, the Brouwer fixed-point theorem, the nonexistence of vector fields on
even-dimensional spheres, the Jordan—Brouwer separation theorem and the
Brouwer theorem on the invariance of domain.

If x and y are points in R", define the segment from x to yto be {(1 — t)x +
tyl0 <t < 1}. A subset C = R" is convex if, given x and y in C, the segment
from x to y lies entirely in C. Note that an arbitrary intersection of convex
sets is convex. If A = R, the convex hull of A4 is the intersection of all convex
sets in R"” which contain A.

A p-simplex s in R" is the convex hull of a collection of (p + 1) points
{x0,...,x,} in R"in which x; — x,, ..., x, — x, form a linearly independent
set. Note that this is independent of the designation of which point is x,.

1.1 Proposition. Let {x,,...,x,} = R" Then the following are equivalent:

(a) — Xg, ..., X, = Xq are linearly independent;

szsx—th and Y s; =Y t; thens;=t; fori=0,...,p.



2 Homology Theory

Proof. (a) = (b): If Y s;x; = Y t;x;and ) s; = Y t;, then

(s; — t)x [ios~t:|0

(s; = £:)(x; — xo)-

(si — tj)x; =

-

i

V[\/]'a EMH

]
—

i

By the linear independence of x; — x,, ..., x, — X, it follows that s; = ¢, for
i=1,..., p. Finally, this implies s, =ty since ) s, = Y t;.

a) If Z:"’=1 (t:)(x; = Xo) = 0, then Z:"’=1 Lx; = (Zf=1 t;)Xo and by (b)
the coefficients ¢, ..., t, must all be zero. This proves linear independence.

0

Let s be a p-simplex in R" and consider the set of all points of the form
toXg + t1X; + - 4 t,x,, where Y t, = 1 and t; > 0 for each i. Note that this
is the convex hull of the set {x,,...,x,} and hence from Proposition 1.1 we
have the following:

1.2 Proposition. If the p-simplex s is the convex hull of {x,...,x,}, then every
point of s has a dzstznct unique representation in the form ) t;x;, where t; > 0

foralliandy t; = O

The points x; are the vertices of s. This proposition allows us to associate
the points of s with (p 4 1)-tuples (to,t,,...,t,) with a suitable choice of the
coordinates ¢;.

EXERCISE 1. Let y bea point in s. Then y is a vertex of s if and only if y is not an interior
point of any segment lying in s.

If the vertices of s have been given a specific order, then s is an ordered
simplex. So let s be an ordered simplex with vertices x,, x;, ..., x,. Define g,
to be the set of all points (to,t,...,t,) € RP*! with ) t;=1 and t; > 0 for
each i. If a function

fro,—>s

is given by f(to,....t,) = ) t;x;, then f is continuous. Moreover, from the
uniqueness of representations and the fact that ¢, and s are compact
Hausdorff spaces it follows that f is a homeomorphism. Thus, each ordered
p-simplex is a natural homeomorphic image of 5,. Note that ¢, is a p-simplex
with vertices x5 = (1,0,...,0), x; =(0,1,...,0), ..., x,=(0,...,0,1). g, i
called the standard p-simplex with natural ordering.

Let X be a topological space. A singular p-simplex in X is a continuous
function

$.0,— X.
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Note that the singular 0-simplices may be identified with the points of X,
the singular 1-simplices with the paths in X, and so forth.

If ¢ is a singular p-simplex and i is an integer with 0 < i < p, define 6,(¢), a
singular (p — 1)-simplex in X, by

0i(to, ... tpoy) = Pltg, by, st 1,00t ).

¢4 is the ith face of ¢.

For example, let ¢ be a singular 2-simplex in X (Figure 1.1). Then, 0,4 is
given by the composition shown in Figure 1.2. That is, to compute d;¢ we
embed ¢,_, into o, opposite the ith vertex, using the usual ordering of ver-
tices, and then go into X via ¢.

If f: X - Y is a continuous function and ¢ is a singular p-simplex in X,
define a singular p-simplex f,(¢) in Y by f.(4) = f o ¢. Note thatifg: Y - W
is continuous and id: X — X is the identity map,

(g0f)s(@) =94(/x(4) and  (id),(¢) = ¢.

An abelian group G is free if there exists a subset 4 € G such that every
element g in G has a unique representation

g= ) nc-x,

xed
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where n, is an integer and equal to zero for all but finitely many x in 4. The
set A is a basis for G.

Given an arbitrary set A we may construct a free abelian group with basis
A in the following manner. Let F(A4) be the set of all functions f from 4 into
the integers such that f(x) # 0 for only a finite number of elements of A.
Define an operation in F(A4) by (f + g)(x) = f(x) + g(x). Then F(A) is an
abelian group. For any a € A define a function f, in F(A4) by

100 = 1 ifx=ua
o) = 0 otherwise.

Then {f,|a e A} is a basis for F(A) as a free abelian group. Identifying a with
f, completes the construction.

For example, let G = {(n,,n,,...)|n; is an integer, eventually 0}. Then G is
an abelian group under coordinatewise addition, and furthermore it is free
with basis

(1,0,...),(0,1,0,...), (0,0, 1,0,...), ... .

For convenience we say that if G = 0, then G is a free abelian group with
empty basis.

Note that if G is free abelian with basis 4 and H is an abelian group, then
every function f: A — H can be uniquely extended to a homomorphism f:
G- H.

If X is a topological space define S,(X) to be the free abelian group whose
basis is the set of all singular n-simplices of X. An element of S,(X) is called a
singular n-chain of X and has the form

Y. ng g,
7

where ny is an integer, equal to zero for all but a finite number of ¢.

Since the ith face operator ¢; is a function from the set of singular n-
simplices to the set of singular (n — 1)-simplices, there is a unique extension
to a homomorphism

ai: Sn(X) - n*l(X)
given by ,(Y n, @) =Y n, ;. Define the boundary operator to by the
homomorphism

0: $,(X) = 8, -1(X)
given by

C=0p—0;+ 0+ +(—1),

Il
i)
s
—_
|
—
~—.
Sl

1.3 Proposition. The composition 8 o 0 in
Su(X) 5 8, 1(X) > S, 5(X)

is zero.
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ExeRrcise 2. Prove Proposition 1.3. O

Geometrically this statement merely says that the boundary of any n-chain
is an (n — 1)-chain having no boundary. It is this basic property which leads
to the definition of the homology groups. An element ¢ e S,(X) is an n-cycle
if (c) = 0. An element d € S,(X) is an n-boundary if d = d(e) for some ¢ €
S, +1(X). Since & is a homomorphism, its kernel, the set of all n-cycles, is a
subgroup of S,(X) denoted by Z,(X). Similarly the image of d in S,(X) is the
subgroup B,(X) of all n-boundaries.

Note that Proposition 1.3 implies that B,(X) € Z,(X) is a subgroup. The

quotient group
H,(X) = Z,(X)/B,(X)

is the nth singular homology group of X. The geometric motivation for this
algebraic construction is evident; the objects we wish to study are cycles in
topological spaces. However, in using singular cycles, the collection of all
such is too vast to be effectively studied. The natural approach is then to
restrict our attention to equivalence classes of cycles under the relation that
two cycles are equivalent if their difference forms a boundary of a chain of
one dimension higher.

This algebraic technique is a standard construction in homological alge-
bra. A graded (abelian) group G is a collection of abelian groups {G,} indexed
by the integers with componentwise operation. If G and G’ are graded groups,
a homomorphism

f:G-G
is a collection of homomorphisms { f;}, where
f;': Gi - G;Jrr

for some fixed integer r. r is then called the degree of f. A subgroup H < G of
a graded group is a graded group {H;} where H; is a subgroup of G,. The
quotient group G/H is the graded group {G,/H,}.
A chain complex is a sequence of abelian groups and homomorphisms
s C"_E"+ Cn_li;...

in which the composition é,_, o 4, = 0 for each n. Equivalently a chain com-
plex is a graded group C = {C;} together with a homomorphism é: C — C of
degree — 1 such that 6 o @ = 0. If C and C’ are chain complexes with bound-
ary operators ¢ and &', a chain map from C to €’ is a homomorphism

. C-C

of degree zero such that ¢’ o @, = ®,_, o J for each n. (Note that the require-
ment that ® have degree zero is unnecessary. It is stated here only as a
convenience since all chain maps we will consider have this property.)
Denoting by Z,(C) and B,(C) the kernel and image of 0, respectively, the
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homology of C is the graded group
H,(C) = Z,,(C)/B,(C).
Note that if @ is a chain map,
YZ, () = Z,(C) and ®(B,(C)) € B, (C').
Therefore, ® induces a homomorphism on homology groups
®,:H (C)—> H(C).

In this sense the graded group S,(X) = {S;(X)} becomes a chain complex
under the boundary operator ¢, so that the homology group of X is the
homology of this chain complex. If f: X — Y is a continuous function and ¢
is a singular n-simplex in X, there is the singular n-simplex f,(¢) = fo ¢in Y.
This extends uniquely to a homorphism

a1 Su(X) - S,(Y) foreach n

To show that f is a chain map from S,(X) to S,(Y) it must be checked that
the following rectangle commutes:

S,X) —L— s,)

S, (X) —L 5, (V)

First note that it is sufficient to check that this is true on singular n-simplices
¢, and second, observe that it is sufficient to show 0,1, (#) = f, ;(#). Now

4 0i@)(tos- s t—y) = f(Pltos. o ti, 0,800, )

and
Cif g (D) tos--sty—y) = [e(@)tos- i1, 0 Li s by )
= fld(tg,.. s tic1 00t sty 1)),

Thus, f,:S,(X)— S,(Y) is a chain map and there is induced a homomor-
phism of degree zero

S H (X) > H_(Y).

Note that this is suitably functorial in the sense that for g: Y - W a continu-
ous function and id: X — X the identity, (g o f), = g, o f, and id, is the
identity homomorphism.

As a first example take X = point. Then for each p > 0 there exists a
unique singular p-simplex ¢,: 6, — X. Note further that for p >0, 8,4, =
#,-1- So consider the chain complex

= 85(pt) = 8, (pt) = So(pt) — 0.
Each S,(pt) is an infinite cyclic group generated by ¢,. The boundary opera-
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tor is given by

0= 3 (=1 = 3 (~ 14,y
Thus, é¢,,_; =0 and C¢,, = @,,_, for n > 0. Applying this to the chain
complex it is evident that

Z,(pt) = B,(pt) for n>0.

However, Z,(pt) = S¢(pt) is infinite cyclic, whereas Bg(pt) = 0. Therefore, we
conclude that the homology groups of a point are given by

yA ifn=20

H =
n(PY) {O ifn > 0.

A space X is pathwise connected if given x, y € X, there is a continuous
function

Y:[0,1]-> X

such that ¥(0) = x and (1) = y. Note that instead of [0,1] we could have
used a,.

Suppose that X is a pathwise connected space, and consider the portion of
the singular chain complex of X given by

S,(X) 5 So(X) > 0.

Now S4(X) = Z,(X), which may be viewed as the free abelian group gener-
ated by the points of X. That is Z,(X) = F(X). Hence, an element y of Z;(X)
has the form
y= ) nex,
xeX

where the n, are integers, all but finitely many equal to zero.

On the other hand, S,(X) may be viewed as the free abelian group gener-
ated by the set of all paths in X. If the vertices of ¢, are vy and v, and ¢ is a
singular 1-simplex in X, then

0¢ = ¢(v,) — $(vy) € Zo(X).

Define a homomorphism a: So(X) — Z by a(d n,-x) = Y n,. Note that if
X is nonempty, then a is an epimorphism. Since for any singular 1-simplex ¢
in X, 2(0¢) = a(d(v,) — é(vy)) = 0, it follows that B,(X) is contained in the
kernel of 2.

Conversely, suppose that n,x, + -+ + n.x, € Zo(X) with ) n; = 0. Pick
any point x € X and note that for each i there is a singular 1-simplex ¢;: ¢, —»
X with ¢4(¢;) = x; and d,(¢;) = x. Taking the singular 1-chain ) n;¢, in S,(X)
we have () mé) = Y n.x; — (Y. n;)x = ) n;x;. Therefore, the kernel of « is
contained in By(X). This proves that the kernel of « equals By(X) and we
conclude the following:



8 Homology Theory

1.4 Proposition. If X is a nonempty pathwise-connected space, then

Hy(X) =~ Z. O

Let 4 be a set and suppose that for each o € 4 there is given an abelian
group G,. Define an abelian group ) ,. 4 G, as follows: the elements are all
functions

f:A-J G,
aed
such that f(«) € G, for each a, and f(x) = O for all but finitely many elements
2 € A; the operation is defined by (f + g)(2) = f(«) + g(«). Setting g, = f(«) €
G, we write f = (g,: x € A) and call the g, the components of f. The group
Y G, is the weak direct sum of the G,’s. If the requirement that f(«) = 0 for all
but finitely many x is omitted, then the resulting group is the strong direct
sum or direct product of the G,’s, denoted [, . 4 G,
Note that if G is an abelian group and {G, },. 4 is a family of subgroups of
G such that g € G has a unique representation
g= >3 g, with g,€eG,
aed
and g, = 0 for all but finitely many o, then G is isomorphic to ) , 4 G,.
Now for each « € A4 suppose we have a chain complex C*

I

...Scz_, a

p—1

Define a chain complex ) ,.,C* by taking (}.C%), =Y C* and setting
Olcy: 2 € A) = (0%, o € A).

o
— e,

1.5 Lemma. H () C*) = ) , H (C%).

Proof. Note that by the definition of the chain complex ) C* we have
Z,(> ¢ =) (Z(CY) and B,(Y (C) =Y (Bu(CY).
Therefore
H, (Y. C*) = Z,(}. C)/B(}. C°)

= Y (ZUC)Y (B(C)

x Y (Z4(C7)/Bi(C)

=Y H(C. O

Let X be a topological space and for x, y € X, set x ~ y if there exists a

path in X from x to y. It is evident that ~ is an equivalence relation, that is,

() x ~x,
(2) x ~ yand y ~ z implies x ~ z,
(3) x ~ yimplies y ~ x,
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for all points x, y, and z in X. Such a relation decomposes X into a collection
of subsets, the equivalence classes, where x and y are in the same equivalence
class if and only if x ~ y. For this specific relation on X the equivalence
classes are called the path components of X. Note that if x € X the path
component of X containing x is the maximal pathwise-connected subset of X
containing x.

1.6 Proposition. [f X is a space and {X,: x € A} are the path components of X,
then

Proof. There is a natural homomorphism
) SuX,)— Su(X)

xed

A((greepeen)=g,(5rre)

Since the groups involved are free abelian, ¥ must be a monomorphism. To
observe that 'V is also an epimorphism, note first that if

g.0,—> X

given by

is a singular k-simplex, then ¢(o,) is contained in some X, because o, is

pathwise connected. Hence, to any such ¢ there is associated a unique ¢, €

S(X,) with W(4,) = ¢. Therefore, \¥ is an isomorphism for each k.
Moreover, ' is a chain map between chain complexes so that

H((X) =~ Hk< ZA S*(Xa)>.
Finally, it follows from Lemma 1.5 that

Hk( Z S*(Xa)>z Z Hk(Xa)a

aed a€A

which completes the proof. ]

This proposition establishes the intrinsic “additive” property of singular
homology theory. Since the homological properties of a space are completely
determined by those of its path components, and the homological properties
of any path component are independent of the properties of any other path
component, we may restrict our attention to the study of pathwise-connected
spaces.

Note that it follows from Propositions 1.6 and 1.4 that Hy(X) is a free
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abelian group whose basis is in a one-to-one correspondence with the path

components of X.

1.7 Theorem. If f: X — Y is a homeomorphism, then
Jo Hy(X) > H,(Y)

is an isomorphism for each p.
EXERCISE 3. Prove Theorem 1.7, d

The fact that this theorem, the topological invariance of the singular
homology groups, is quite easy to prove is one of the major advantages of
using singular homology theory.

1.8 Theorem. If X is a convex subset of R", then

Hy(X)=0 for p>0.

Proof. Assume X # (Jf and let x € X and ¢: 6, > X be a singular p-simplex,
p > 0. Then define a singular (p + 1)-simplex 6: ¢,,, = X as follows:

t t
(1—t)-<¢< P AL >>+tx for t,<1
O(tg,... t,41) = ¢ 1 -1, 1 -1t ° °

X for t,=1.

That is, we are setting
00, t1,....t,0) = B(ty,....tp ) and 0(1,0,...,0) = x

and then taking line segments from ¢, to the face opposite t, linearly into the
corresponding line segment in X (Figure 1.3). This construction is possible
since X is convex.
From its definition 6 is continuous except possibly at (1,0,...,0). To check
continuity there we must show that
lim [|0(ty,...,t,+;) — x| = 0.

to—1

to

0(r2)
6(ty)

4 2

Figure 1.3
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Now

lim [|0(z,,....t, 1) — x|
= lim

191
2! L+
1 -1t I ot D R
im 0=, 2 ’1—r0>> (1=t

t
< lim (1 — ¢ ! ., 2t >‘+ x||>.
151 o) <“¢< 1—t, "1 —t, H

Since ¢(o,) is compact, ([[¢(t, /(1 — tg),...,t, .1 /(1 — to))| + llx]|) is bounded.
Thus, the final limit is zero because lim, _,, (1 — ;) = 0, and it follows that §
is continuous.

It is evident from the construction that 6,(0) = ¢. Since this procedure may
be applied to any singular k-simplex, k > 0, there is a unique extension to a
homomorphism

T: Si(X) = Si 11 (X)

such that &; o T = identity. More generally we have for ¢ a singular
k-simplex,

ST @) g, ... 1)
= T(P)tgs - s tio1,0, L1 nn ty)

3 iy f Ly
-t .0, ¥ tox.
( 0)<¢<1-—t0 =t 1—t 1 ~t0>> 0¥

On the other hand,
T 1(B)(to, - 1)

:(1_t0)<1 1¢< ‘—to ’1§t0>+t0x>

t t;_ t; t
:(1-:0)-¢< Lo, o, P >+t0x.

1 -t -ty "1 —1¢, 1 —tg

Thus,for1 <i<k+1,
5;T¢ = T(ai—l¢)'

Now let ¢ be any singular k-simplex

k+1

eTp=2T+ ¥ (~1/0,T(H)

k+1 k+1 k
=00 Tg + ; (= 1Y0,T(4) - [ (= 1)T3;,(4) + ZO (= l)jTaj¢:|

i=1 J

= ¢ — Tog.
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So we have constructed a homomorphism T: S,(X) — S, ,(X) with the prop-
erty that 8T + T0 is the identity homomorphism on S,(X), whenever k > 1.

Now let z be an element of Z,(X). From the above, for p >0,
(0T + Td)z = z. Now since z is a cycle, Toz = 0. Thus, z = d(Tz) and z is in
B,(X). This implies that H,(X) = 0 for all p > 0. O

The construction used in proving Theorem 1.8 is a special case of a chain
homotopy between chain complexes. Suppose C = {C;,0} and C' = {C},¢'}
are chain complexes and

T:C->C

is a homomorphism of graded groups of degree one (but not necessarily a
chain map). Then consider the homomorphism

T+ To:C-C
of degree zero. This will be a chain map because

ST+ TE)=¢0T+Te=0Td=0Té+ Tdé = (0T + To)e.
This chain map (¢'T + T0) induces a homomorphism on homology
(0T + T0),: H,(C) - H,(C) foreach p.
Now if z € Z (),
0T+ Té)(z)=0T(2)

which is in B,(C’). Thus, (¢'T + T¢), is the zero homomorphism for each p.

Given chain maps f and g: C —» C’, f and g are chain homotopic if there
exists a homomorphism T: C — C’ of degree one with &'T + T¢ = f — g.

1.9 Proposition. If f and g: C - C' are chain homotopic chain maps, then
S« = g, as homomorphisms from H (C) to H, (C’).

Proof. This follows immediately since if T: C — C’ is a chain homotopy be-
tween f and g, then

As a special case, suppose that f and g: X — Y are maps for which the
induced chain maps

feand g, S, (X)— S (Y)

are chain homotopic. If T is a chain homotopy between f, and g, then T
may be interpreted geometrically in the following way.

Let ¢ be a singular n-simplex in X. Then T(4) may be viewed as a continu-
ous deformation of f,(¢) into g,(4). From Figure 1.4, T(§) appears as a
prism with ends f,(#) and g, (¢) and sides T(d¢). Thus, it is reasonable that
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8.(¢) /

Figure 1.4

0T(9) = f4(#) — g4 (4) — T(09),

which is the algebraic requirement for T to be a chain homotopy.

If the chain ¢ = ) m;¢, is an n-cycle in X, then f,(c) and g ,(c) are n-cycles
in Y. T(c) is a collection of integral multiples of such prisms and the algebraic
sum of the sides must be zero since dc = 0. Thus, the boundary of T(c) is the
algebraic sum of the ends of the prisms, which is f,(c) — g .(c), so that f,(c)
and g ,(c) are homologous cycles in Y.

Given spaces X and Y, two maps f,, f1: X — Y are homotopic if there exists
a map

F:XxI-Y I=[0,1],

with F(x,0) = f3(x) and F(x,1) = f;(x), for all x in X. The map F is a
homotopy between f, and f;. Equivalently a homotopy is a family of maps
{filo<i<i from X to Y varying continuously with ¢. It is evident that the
homotopy relation is an equivalence relation on the set of all maps from X
to Y. It is customary to denote by [ X, Y] the set of homotopy classes of maps.

1.10 Theorem. If f,, fi: X - Y are homotopic maps, then fy, = fi, as
homomorphisms from H_(X) to H(Y).

Proof. The idea of the proof is quite simple: if z is a cycle in X, then the
images of z under f, and f; will be cycles in Y. Since f, may be continuously
deformed into f;, the image of z under f, should admit a similar continuous
deformation into the image of z under f;. This should imply that the two
images are homologous cycles. We now proceed to put these geometric ideas
into the current algebraic framework.

In view of Proposition 1.9 it will be sufficient to show that the chain maps
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Jo#r fie: Se(X) > S, (Y) are chain homotopic. Let
F:XxI-Y
be a homotopy between f; and f;. Define maps
go, g1 X > X x I
by go(x) = (x,0) and g, (x) = (x, 1):
X

g0 Jo
-

Xx] — Y

g1
I

X

Then in the diagram each triangle is commutative, that is, f; = F o g, and
Ji=Fog;.

Now suppose that g, and g, , are chain homotopic as chain maps from
S,(X) to S, (X x I). This would mean that there exists a homomorphism

T:S,.(X)—> S (X x I
of degree one with 6T + T = go, — g, 4. Applying F, to both sides gives
Fu(@T + T0) = Fy(gos — 914) or OF,T)+(FyT)0 = fou — f14-

Then F, T is a homomorphism from S_(X) to S, (Y) of degree one and is a
chain homotopy between f;, and f, ,. Therefore, it is sufficient to show that
g0« and g, are chain homotopic.

For ¢, the standard n-simplex denote by t, € S,(s,) the element represented
by the identity map. Note that if ¢: 6, > X is any singular n-simplex in X,
then the induced homomorphism

¢#: S"(O'") - Sn(X)

has ¢,(t,) = ¢. It is evident that every singular n-simplex in X can be ex-
hibited as the image of 7, in this manner. Our technique of proof then will be
to first give a construction involving t, and then extend it to all of S,(X) by
the above approach.

We construct a chain homotopy T between g, , and g, , inductively on the
dimension of the chain group. To do the inductive step first, suppose that
n > 0 and for all spaces X and integers i < n there is a homomorphism

T:S(X)—> Si (X x )

such that éT + T¢ = gy, — g, .. Assume further that this is natural in the
sense that given any map h: X - W of spaces, commutativity holds in the
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diagram
SiX) —2 S,y (X x I)
Jh* J(hxid)*
S(W) — S, (W x I)
foralli < n.

To define T on the n-chains of X, it is sufficient to define T on the singular
n-simplices. So let ¢: 6, — X be a singular n-simplex and recall that ¢,(t,) =
¢. Thus, by defining T, : S,(0,) > S, (0, x I), the naturality of the construc-
tion will require that

Tx () = Tx(9«(1,)) = (¢ x 1d)(T; (1,)).
So to define Ty it is sufficient to define T, on S,(o,).
Let d be a singular n-simplex in o, and consider the chain in S,(o, x I)
given by
c= go#(d) — g1x(d) - E"(ad),

which is defined by the induction hypothesis since dd is in S, _,(6,). Note that
from the preceding discussion, ¢ corresponds to the boundary of a certain
prism in g,. Then

dc = 0go4(d) — 0g,4(d) — 0T, (0d)
= go4(0d) — g1 4(0d) — [go4(0d) — g,,(0d) — T, 0(dd)]
= 0.
Thus, ¢ is a cycle of dimension »n in the convex set g, x I. From Theorem 1.8

it follows that ¢ is also a boundary. So let b € S, ,, (s, x I) with db = ¢. Geo-
metrically b is the solid prism of which ¢ is the boundary. Then define

T, (d)=b
and observe that
0T(d) + To(d) = go4(d) = g,,(d).
Now for any singular n-simplex ¢: g, = X define, as before,
Ti(¢) = (¢ x 1d), T, (1,).
So defined on the generators there is a unique extension to a homomorphism
Tyt Su(X) > 8,40 (X X ).

This inductive construction indicates the proper definiton for T on 0-chains.
Recall that o is a point and consider the chain ¢ in Sy(o4 x I) given by

€= gox(t0) = 914(To).
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Take a singular 1-simplex b in g, x I with boundary g, .(t,) — ¢, (7o) and
define T, (t,) = b. This defines T on 0-chains by the same technique.
Finally it must be noted that in the definition given for T on n-chains of X,

0Ty + Tx0 =goy — 914
and that the construction is suitably natural with respect to maps h: X - W.

Note that if ¢ is a singular n-simplex in X,

Gox(P) = G0 40,4(T,) = (¢ x id) ,go4(7,)

and similarly

G14(8) = 914 b4 (t,) = ( x 1d) 19, 4(1,).
Now consider
0T(P) + To(p) = 0TP,(1,) + T ,(z,)
= 0(¢ x 1d), T(x,) + Tp, (z,)
= (¢ x id),0T(z,) + (¢ x 1d), T0(1,)
= (¢ % 1d) (9o 4 (Ta) — 914(1,))
= go4(9) — 914(4).

The naturality follows similarly.
Therefore, Ty gives a chain homotopy between g, , and g,,, and we have
completed the proof that f;, = fi,. [l

Note that this generalizes the approach in Theorem 1.8. There we used the
fact that, since X was convex, the identity map was homotopic to the map
sending all of X into the point x. Thus in positive dimensions the identity
homomorphism and the trivial homomorphism agree, and the positive di-
mensional homology of X is trivial.

Let /: X » Yand g: Y —» X be maps of topological spaces. If the composi-
tions f o g and g o f are each homotopic to the respective identity map, then
f and g are homotopy inverses of each other. A map f: X — Y is a homotopy
equivalence if f has a homotopy inverse; in this case X and Y are said to have
the same homotopy type.

1.11 Proposition. If f: X — Y is a homotopy equivalence, then f,: H,(X)—
H,(Y) is an isomorphism for each n.

Proof. 1f g is a homotopy inverse for f, then by Theorem 1.10 f, o g, =
(f © g), = identity and g, o f, = (g9 o f), = identity so that g, = f,”! and f,
is an isomorphism. O

Suppose that it 4 — X is the inclusion map of a subspace 4 of X. A map
g. X — A such that g o i is the identity on A is a retraction of X onto A. If
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furthermore the composition i o g: X — X is homotopic to the identity, then
g 1s a deformation retraction and A is a deformation retract of X. Note that in
this case the inclusion i is a homotopy equivalence.

1.12 Corollary. If i: A — X is the inclusion of a retract A of X, then i:
H,(A) - H,(X) is a monomorphism onto a direct summand. If A is a deforma-
tion retract of X, then i is an isomorphism.

Proof. The second statement follows immediately from Proposition 1.11. To
prove the first, let g: X — A4 be a retraction. Then

gy 0 iy = (g o i), = (id), = identity on H,_(A).
Hence, i, is a monomorphism.

Define subgroups of H, (X) by G, =image i, and G, = kernel g,. Let
2 € G; NGy, so that o = i (f) for some f € H,(A4) and g,(x) = 0. However

0=g,(%) =g,,(B)= B
so that « = i () must be zero. On the other hand, let y € H,(X). Then
7= 184(7) T (7 — 1404(7))

expresses 7 as the sum of an element in G, and an element in G,. Therefore,
H,(X)= G, ® G, and the proof is complete. O

A triple C L DS E of abelian groups and homomorphisms is exact if
image f = kernel g. A sequence of abelian groups and homomorphisms
"'—+Gli+Gzi2+G3i3+"'f—m-;G,,i"—>"'
is exact if each triple is exact. An exact sequence
0-CcLD5ES0
is called short exact. This is a generalization of the concept of isomorphism
in the sense that h: G, — G, is an isomorphism if and only if
05G, 5G,>0
is exact.
Note that in a short exact sequence as above, f is a monomorphism and

identifies C with a subgroup C’ = D. Also g is an epimorphism with kernel C’.
Thus up to isomorphism the sequence is just

0-C 5p5p/Cc 0.
Suppose now that C = {C,}, D = {D,} and E = {E,} are chain complexes
and

is a short exact sequence where f and g are chain maps of degree zero. Hence,
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for each p there is an associated triple of homology groups,
S Ix
H,(C) > H,(D) - H,(E).

We now want to examine precisely how this deviates from being short exact.
So we are assuming that we have an infinite diagram in which the rows are
short exact sequences and each square is commutative.

Let z e Z,(E), that is, z € E, and Jz = 0. Since g is an epimorphism, there
exists an element d € D, with g(d) = z. From the fact that g is a chain map we
have

g(0d) = d(g(d)) = 0z = 0.

The exactness implies that éd is in the image of f, so let c € C, _, with f(c) =
éd. Note that

f(@c) = of(c) = d(ad) = O,

and since f is a monomorphism, dc must be zero, and c € Z,, _;(C).

The correspondence z — ¢ of Z,(E) into Z,_,(C) is not a well-defined func-
tion from cycles to cycles due to the number of possible choices in the con-
struction. However, we now show that the associated correspondence on the
homology groups is a well-defined homomorphism.

Let z, z' € Z,(E) be homologous cycles. So there exists an elementee E,
with d(e) =z — z'. Let d, d’ e D, with g(d)=1z, g(d')=2', and ¢, c'e C,_;
with f(c) = dd, f(c¢') = éd’. We must show that ¢ and ¢’ are homologous
cycles.

There exists an element a € D, ., with g(a) = e. By the commutativity

g(da) = 0gla) = 0e =z — 2/,

so we observe that (d — d’) — da is in the kernel of g, hence also in the image
of f. Let b e C, with f(b) = (d — d') — da. Now we have

f(éb) = 8f(b) = 0(d — d’ — éa) = od — &d’
= flc) = f(¢') = flc = ¢').
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Since f is one to one, it follows that ¢ — ¢’ = db and ¢ and ¢’ are homologous
cycles. Therefore, the correspondence induced on the homology groups is
well defined and obviously must be a homomorphism.

This homomorphism is denoted by A: H,(E) » H,_,(C) and called the
connecting homomorphism for the short exact sequence

0-C->D->E-NO
! g

1.13 Theorem. If 0 - C 5D % E S 0is ashort exact sequence of chain com-
plexes and degree zero chain maps, then the long exact sequence
S I«

I« A S
- H,(D) > H,(E) > H,_,(C) > H,_,(D) >
is exact.
EXERCISE 4. Prove Theorem 1.13. O
It is important to note that the construction of the connecting homomor-

phism is suitably natural. That is, if
' g

0 c D E 0
0 c L . .p ., F 0

is a diagram of chain complexes and degree zero chain maps in which the
rows are exact and the rectangles are commutative, then commutativity holds
in each rectangle of the associated diagram

N H"(D) I« A S«

H(E) —— H,_,(C) —— H,_,(D) — -

» Hy(D') —2 H(E') —2— H,_,(C) —L H,_,(0') —— -

Let X be a topological space and A € X a subspace. The interior of A
(Int 4) is the union of all open subsets of X which are contained in 4, or
equivalently the maximal subset of A which is open in X. A collection % of
subsets of X is a covering of X if X < | J,.4 U. Given a collection %, let int %
be the collection of interiors of elements of % We will be interested in those
% for which int % is a covering of X.

For % any covering of X, denote by S¥(X) the subgroup of S,(X) generated
by the singular n-simplices ¢: g, —» X for which ¢(o,) is contained in some
U e . Then for each i

image 0;¢ < image ¢
so that the total boundary
3: SY(X) = SLy(X).
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So associated with any covering % of X there is a chain complex SY(X) and
the natural inclusion

i: SY(X) - S,(X)

is a chain map. Note that if ¥” is a covering of a space Yand f: X > Yisa
map such that for each U € %, f(U) is contained in some V of ¥, then there
is a chain map

[ S{(X) = S7(Y)

and f,oiy =iyo f,.
We are now ready for the theorem which will serve as the essential compu-
tational tool in studying the homology groups of spaces.

1.14 Theorem. If % is a family of subsets of X such that Int% is a covering of
X, then

iy Hy(S (X)) > Hy(X)

is an isomorphism for each n.
Proof. See Appendix 1. O

The proof is deferred to an appendix to avoid a lengthy interruption of the
exposition. It should not be assumed that this implies the proof is either
irrelevant or uninteresting. Indeed this argument characterizes the basic dif-
ference between homology theory and homotopy theory. Intuitively the ap-
proach to proving this theorem is evident. Given a chain ¢ in X we must
construct a chain ¢’ in X such that ¢’ is in the image of i and dc = dc'.
Moreover, if ¢ is a cycle we will want ¢’ to be homologous to ¢. This is done
by “subdividing” the chain ¢ repeatedly until the resulting chain is the desired
¢'. The technique of subdivision is possible in homology theory because an
n-simplex may be subdivided into a collection of smaller n-simplices. How-
ever, the subdivision of a sphere does not result in a collection of smaller
spheres. It is the absence of such a construction, that makes the computation
of homotopy groups extremely difficult for spaces as simple as a sphere.

To see the requirement that Int % covers X is essential, let X = S*, x, € S?,
and % = {{x,},S? — {xo}}. Then any chain ¢ in S{(S') may be uniquely
written as the sum of a chain ¢, in {x,} and a chain ¢, in §* — {x,}. More-
over, since the image of ¢, is contained in a compact subset of S* — {x,}, ¢
will be a cycle if and only if each of ¢, and c, are cycles. Now both ¢, and c,
must then also be boundaries; hence, H,(SY(S!)) = 0. However, it will soon
be shown that H,(S*) ~ Z.

The first application of Theorem 1.14 will be the development of a tech-
nique for studying the homology of a space X in terms of the homology of
the components of a covering # of X. In the simplest nontrivial case the
covering % consists of two subsets U and V for which Int U uInt V = X. For
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convenience let A’ be the set of all singular n-simplices in U and 4” be the set
of all singular n-simplices in V. Then

S.(U)=F(4"),  S§(V)=F(4"),
SUnV)y=F(A nA", SY(X)=F(4 v A"

Note that there is a natural homomorphism

h: F(A)® F(A")> F(4'u A4")
given by

h(aj,a) = a; + aj.

It is not difficult to see that 4 is an epimorphism. On the other hand, there is
the homomorphism

g:F(AnA")> F(A)® F(A")
given by

g(b;) = (bi, —by).

It follows immediately that g is a monomorphism and hog =0. Now
suppose

h(Y mal,y maj) = 0.
That is
Y maj + Y maj =0.
Since these are free abelian groups, the only way this can happen is for each

nonzero n;, a; = a; for some j and furthermore m; = —n;. All nonzero coeffi-
cients m; must appear in this manner. This implies that all a; are in A" 4”
and if x = Y m;aj, then ) m;af = —x. Hence,

xe F(A'nA") and  g(x)= (3 maj, )y, myaj).

This proves that the kernel of h is contained in the image of g, and inter-
preting these facts in terms of the chain groups gives for each n a short exact
sequence

0-S,UNV)ESU)®S,(V) 5 s7(X) 0.

Define a chain complex S, (U)@® S,.(V) by setting (S,(U)® S, (V)), =
S (U)@ S, (V) and letting the boundary operator be the usual boundary on
each component. Then the above sequence becomes a short exact sequence
of chain complexes and degree zero chain maps.
By Theorem 1.13 there is associated a long exact sequence of homology
groups,
A

* h*
S HUAY)S H(S,(U)® S,(V) 3 H(SE(X) S Hyy(Un V) — -
From the definition of the chain complex it is evident that H, (S, (U)®



22 Homology Theory

S,(V)) = H(U)® H,(V), and by Theorem 1.14 we have H,(S¥(X)) = H,(X).
Incorporating these isomorphisms into the long exact sequence, we have
established the Mayer-Vietoris sequence

CAHUAV)S HU)® HV) S H(X) S H,_((UnV)>-.
Note that if we define by

U
unv UuV=X
1%

the respective inclusion maps, then g,(x) = (i (x), —j,(x)) and h,(y,z) =
k,(y) + L.(2). The connecting homomorphism A may be interpreted geomet-
rically as follows: any homology class w in H,(X) may be represented by a
cycle ¢ + d where c is a chain in U and d is a chain in V. (This follows from
Theorem 1.14.) Then A(w) is represented by the cycle dc in U n V.

The construction of the Mayer-Vietoris sequence is natural in the sense
that if X' is a space, U’ and V' are subsets with Int U’ ulInt V' = X’, and
f: X - X'is a map for which f(U) < U’ and f(V) = V', then commutativity
holds in each rectangle of the diagram

hy

S HUAV) S HU®H,(V) 5 Hy(X)S H,_,(UAV) -

S HWU AV S HU) @ H(V) S Hy(X) S Hy (U A V) — -

ExaMPLE. Let X = S! and denote by z and z’ the north and south poles,
respectively, and by x and y the points on the equator (Figure 1.5). Let
U=S'—-{z"} and ¥V = S' — {z}. Then in the Mayer-Vietoris sequence as-
sociated with this covering we have

Figure 1.5



1. Singular Homology Theory 23

Figure 1.6

H,(U)® H,(V) 5 H,(S") S Ho(U A V) 5 Ho(U) @ Ho(V).

The first term is zero since U and V are contractible. Thus, A is a mono-
morphism and H,(S*) will be isomorphic to the image of A = the kernel of
g, An element of Ho(U n V) = Z ® Z may be written in the form ax + by,
where ¢ and b are integers.

Now

gulax + by) = (iy(ax + by), —j,(ax + by)).

Since U and V are pathwise connected, i (ax + by) = 0if and only ifa = —b
and similarly for j,. Thus the kernel of g, is the subgroup of Ho(U n V)
consisting of all elemcnts of the form ax — ay. This is an infinite cyclic sub-
group generated by x — y. Therefore, we conclude that

H,(S")~ Z.

To give geometrically a generator  for this group, we must represent w by

the sum of two chains, ¢ + d, where ¢ is in U and d is in V, for which d(c) =

x — y = —éd. The chains ¢ and d may be chosen as shown in Figure 1.6.
For any integer n > 1 the portion of the Mayer— Vietoris sequence

H(U)® H,(V) S H,(S") 3 H,_ (U V)

has the two end terms equal to zero; hence, H,(S*) = 0.
This completes the determination of the homology of S*. We now proceed
inductively to compute the homology of S" for each n. Recall that

S" = {(Xq,.- s Xp i) X, € RY. xF =1} = R™1,

In the usual fashion consider R" < R"*! as all points of the form (x,, ..., x,, 0).
Under this inclusion $"* < S" as the “equator.” Denote by z = (0,...,0,1)
and z! = (0,...,0, — 1) the north and south poles of $". Then by stereographic
projection S" — {z} is homeomorphic to R", and similarly for $* — {z'}. Fur-
thermore, S" — {z U z'} is homeomorphic to R" — {origin}.

EXERCISE 5. Show that $"7! is a deformation retract of R" — {origin}.

NowletU =8"— {z},V =8"— {z'}sothat UnV = §"— {zuz'} Then
by the observations and the exercise above, the Mayer— Vietoris sequence for
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Figure 1.7

this covering becomes
H,(R")@® H,(R") ! H,(S") Y H,_ (8" 5 H,_ (R"Y®H,,_,(R".

For m > 1, the end terms are zero so that A is an isomorphism. For m =1
and n > 1, g, and A must both be monomorphisms so that H,(S") = 0. This
furnishes the inductive step in the proof of the following:

1.15 Theorem. For any integer n > 0, H,(S") is a free abelian group with two
generators, one in dimension zero and one in dimension n. O

1.16 Corollary. For n # m, S" and S™ do not have the same homotopy type. [

Exercise 6. Using only the tools that we have developed, compute the homology of a
two-sphere with two handles (Figure 1.7).
Define the n-disk in R" to be
D" = {(xy,...,x,) € R"|Y. x} < 1}

and note that $"~! < D" is its boundary.
1.17 Corollary. There is no retraction of D" onto S"*.

Proof. For n = 1 this is obvious since D* is connected and S° is not. Suppose
n>1and ;D" > S""! is a map such that foi = identity, where i is the
inclusion of $"~* in D",
This implies that the following diagram of homology groups and induced
homomorphisms is commutative:
id

Hn—l(S"—l) - Hn—l(S"—l)

iy S«

Hn—l(D")

However, this gives a factorization of the identity on an infinite cyclic group
through zero which is impossible. Therefore, no such retraction f exists. [J
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8(x)

Figure 1.8

1.18 Corollary (Brouwer fixed-point theorem). Given a map f: D" — D", there
exists an x in D" with f(x) = x.

Proof. Suppose f: D" — D" without fixed points, Define a function g: D" —
§"~1 as follows: for x € D" there is a well-defined ray starting at f(x) and
passing through x. Define g(x) to be the point at which this ray intersects
S"~! (Figure 1.8). Then g: D" — $"~! is continuous and g(x) = x for all x in
S"~!. But the existence of such a map g contradicts Corollary 1.17. Therefore,
f must have a fixed point. O

EXERCISE 7. Show that Corollary 1.18 implies Corollary 1.17.

Let n > 1 and suppose that f: S" —» " is a map. Choose a generator o of
H,(S") = Z and note that the homomorphism induced by f on H,(S") has
f(®) = m-a for some integer m. This integer is independent of the choice of
the generator since f,(—a) = —f, (2) = —m-a = m-(—a). The integer m is
the degree of f, denoted d(f). This is often referred to as the Brouwer degree
as a result of the work of L.E.J. Brouwer. The degree of a map is a direct
generalization of the “winding number” associated with a map from the circle
into the nonzero complex numbers.

The following basic properties of the degree of a map are immediate conse-
quences of our previous results:

(a) d(identity) = 1,

(b) if f and g: S" — S" are maps, d(f o g) = d(f)-d(g);
(c) d(constant map) = 0;

(d) if f and g are homotopic, then d(f) = d(g);

(e) if fis a homotopy equivalence then d(f) = + 1.

A slightly less obvious property (a future exercise) is that there exist maps of
any integeral degree on S" whenever n > 0. All these properties are results of
homology theory, and as such are easily obtained. A much more sophisti-
cated property is the homotopy theoretic result of Hopf, which is the con-
verse of property (d), if d(f) = d(g) then f and g are homotopic. Thus, the
degree is a complete algebraic invariant for studying homotopy classes of
maps from S" to S™.
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Figure 1.9

1.19 Proposition. Let n > 0 and define f: S" —» S" by
f(xlsxz""’anrl)=(_x17x2’“'9xn+1)'

Thend(f)= —1.

Proof. First consider the case n = 1 (Figure 1.9). As before let z = (0, 1), z" =
(0,—1) and x =(—1,0), y =(1,0). The covering U = S* — {z'} and V—
— {z} has the property that f(U) < U and f(V) = V.
Thus, by the naturality of the Mayer—Vietoris sequence the diagram
0 — H,(S") —2 Hy(UnV)
S« S3*

0 —— H,(S') —25 Hy(UnV)

has exact rows, and the rectangle commutes where f; is the restriction of f.
Recall that a generator o of H,(S!) was represented by the cycle ¢ + d where
dc =x —y= —0dd, and A(a) is represented by x — y. Now

Afu(@) = f3.A00) = faux = y) =y — x = —A(2) = A(—a).

Since A is a monomorphism, d(f) = — 1.

Now suppose the conclusion is true in dimension n — 1 > 1 and consider
S"~! = S" as before. Taking U and V to be the complements of the south pole
and the north pole, respectively, in S”, the inclusion

STl UnvV
is a homotopy equivalence. Since n > 2, the connecting homomorphism in
the Mayer-Vietoris sequence is an isomorphism. Thus, in the diagram
H(S") —2— H,,(UnV) —— H, (")

(S —=— H,.;(UNV) «——— H,_,(s"™})
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each rectangle commutes and the horizontal homomorphisms are isomor-
phisms. If z is a generator of H,(S"),

Ful@) = AT oA (@) = A7 fLi A () = — AN A(e) = —o

This gives the inductive step and the proof is complete. O

For a given map f: S" - S" n > 0, there is associated a map g: $"*! - S"*!
called the suspension of f and denoted by ) f. Intuitively, the idea is that the
restriction to the equator (S") in S"*! should be f and each slice in S"*!
parallel to the equator should be mapped into the corresponding slice in the
manner prescribed by f (Figure 1.10). Specifically consider $"*!' < R"*2 =
R"*! x R?! so that the points of $"*! are of the form (x,t), where x € R"*?,
t e R* and | x| + |t|?> = 1. Then define

a1 ifx=0
Zf(x’t)_{(lell'f(x/llxil),t) if x # 0.

It is not difficult to see that ) f is continuous and has the desired
characteristics.

The technique used in proving Proposition 1.19 may be applied to estab-
lish the following:

1.20 Proposition. If f: 5" — S", n > 1 is a map, then d(}_ f) = d(f). O

Note that if f(xy,...,X,1)=(—X4,...,Xp4y) and g(xy,..., X, 42) =
(—Xy,...,Xns2), theng = ) fand Proposition 1.19 is a special case of Propo-
sition 1.20.

1.21 Corollary. If f: S" — S" is given by
S Xy Xgp1) = (Xqseos —Xise ooy Xp i )s
thend(f)= —1.

Proof. Let h: S" - S" be the map that exchanges the first coordinate and the
ith coordinate. Then h is a homeomorphism (h™! = h), so d(h) = +1. Let
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g(xl""7xn+l) = (_xl,---,x,,-H)SO that d(g) = — 1. Then
d(f) = d(ho g o h) = d(hyd(g) = (£ 1} (= 1) = 1. 0

1.22 Corollary. The antipodal map A:S"— S" defined by A(x,,...,x,) =
(—Xy,e.., —X,) has d(A) = (— 1)"*L.

Proof. From Corollary 1.21 A is the composition of (n + 1)-maps, all having
degree — 1. O

EXERCISE 8. Show that for n > 0 and m any integer, there exists amap f: §" —
S" of degree m.

1.23 Proposition. If f, g: S" — S" are maps with f(x) # g(x) for all x in S", then
g is homotopic to A o f.

Proof. Graphically the idea is as follows: since g(x) # f(x), the segment in
R"*! from Af(x) to g(x) does not pass through the origin. Thus, projecting
out from the origin onto the sphere yields a path in S" between Af(x) and g(x)
(Figure 1.11). These are the paths which produce the desired homotopy. In
particular we define a function

F:8"x I ->S8"
by
P = (L= DA + -9
(1 = 0)Af(x) + t-g(x)|
which gives the homotopy explicitly. O

1.24 Corollary. If f:S?*" — S?" is a map, then there exists an x in S*" with
f(x) = x or there exists a y in S*" with f(y) = —y.

Proof. If f(x) # x for all x, then by Proposition 1.23 f is homotopic to A.
On the other hand, if f(x) # —x = A(x) for all x, then f is homotopic to
A o A = identity.

8(x) fx)

Af(x)

Figure 1.11
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Figure 1.12

When both of these conditions hold, we have
d(A) = d(f) = d(identity).

However, d(4) = (—1)>**! = — 1 and d(identity) = 1, and the two conditions
cannot hold simultaneously. O

1.25 Corollary. There is no continuous map f: S*" — S" such that x and f(x)
are orthogonal for all x. O

Although these ideas have not been defined, S" is a manifold of dimenion
n. That is, it is locally homeomorphic to R". As such it has a tangent space
T(S", x) at each point x in S™. With S" identified with the unit sphere in R"**,
T(S", x) is the n-dimensional hyperplane in R"*! which is tangent to S" at x
(Figure 1.12). We may translate this hyperplane to the origin where it be-
comes the n-dimensional subspace orthogonal to the vector x. Of course, as
x varies over $", these subspaces will vary accordingly. A vector field on S" is
a continuous function assigning to each x in $" a vector in the corresponding
linear subspace. A vector field ¢ is nonzero if ¢(x) # 0 for each x in S".

1.26 Corollary. There exists no nonzero vector field on §2",

Proof. 1f ¢ is a nonzero vector field on S2", then Y(x) = ¢(x)/|#(x)|| is a vector
field on S?" of unit length. Thus, : $2" > $?" is a map for which Y(x) is
orthogonal to x for each x. But this is impossible by Corollary 1.25. Hence,
no such vector field exists. O

Nonzero vector fields always exist on odd-dimensional spheres. A collec-
tion of vector fields ¢,, ..., ¢, on S" is linearly independent if for each x in §"
the vectors ¢,(x), ..., d,(x) are linearly independent. A famous problem in
mathematics is the determination of the maximum number of linearly inde-
pendent vector fields which exist on $?"*! for each value of n. The work of
Hurwitz and Radon [see Eckmann, 1942] gives a strong positive result; that
is, a specific number of linearly independent vector fields (varying with the
dimension of the sphere) is shown to exist. The solution of the problem was
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completed by Adams [1962] who showed that these positive results were the

best possible.

Before proceeding with further applications, we digress in order to intro-
duce some necessary algebraic ideas. A directed set A is a set with a partial
order relation < such that given elements a and b in A there eixsts an

element ¢ in A with a < c and b < ¢. A direct system of sets is a family of sets
{X,} aen, where A is a directed set, and functions

f:X,-» X, whenever a<b,
satisfying the following requirements:

(1) f7 = identity on X, for each a in A,
(i) ifa < b < ¢, then ff = fo f2.

The particular case of interest to us is where the X, are abelian groups and
the £ are homomorphisms. So let {X,, f?} be a direct system of abelian
groups and homomorphisms. Define a subgroup R of  , X, as follows:

R = {i xﬂi
i=1

Then the direct limit of the system {X,, £} is the group
lim X, =3 X,/R.

there existsa ce A, ¢ > a; for all i, and ) f(x,)= 0}.
i=1

i

Note that if x, is in X, and X, is in X,, then they will be equal in the direct
limit if for some cin A, ¢ > a and ¢ > b and f(x,) = fif(x}).

1.27 Lemma. Let X be a space and denote by {X,} the family of all compact
subsets of X, partially ordered by inclusion. Then the family of groups
{H,(X,)} forms a direct system where the homomorphisms are induced by the
inclusion maps. Then

Proof. For each X, let the homomorphism
ga*: H*(Xa) - H*(X)
be induced by the inclusion map. Then set

g = Z ga*: Z H*(Xa) - H*(X)

Now suppose that Y7, X, 1s in R; that is, there exists a compact subset
X, € X such that X, < X, for each i and

Zl gnlz,,-*(xa,-) = 0 in H*(Xb)

Then from the commutativity of the diagram
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Y Hy(X,) —4— H

it follows that g(} 7., x,) = 0 and R is contained in the kernel of g. Thus, g
induces a homomorphism

Z H, (X,)/R = 11m H (X,) ~ H(X).

For any homology class x in H,(X), represent x by a cycle ) n;¢;. Since o,
is compact, ¢;(0,) is compact in X for each j. Then the chain ) n;¢; is
“supported” on the set | J;¢,(s,), which is compact since the sum is finite.
Thus

\ #(0,) = X, forsome a,

and ) n;¢; must represent some homology class x, in H,(X,). Moreover, it is
evident that g,.(x,) = x; hence, x is in the image of g and g is an epimorphism.

Now suppose that Y7, x, is in ¥, H,(X,) with g(} 7, x, ) = 0. Each x,,
may be represented by a cycle Y jnijdi;in X o Then g(} 71 x,,) is represented
in X by the cycle  ; ;n;;¢,;. Since we have assumed that this cycle bounds,
there exists an (n + 1)-chain Y, m,, in X with 8(}_ m,¥,) = 3, ;n;;¢;;. Once
again define a subset of X by

xo= | Yo || Y x|

and note that X, is compact. Since Y m,, is an (n + 1)-chain in X, with
o m) =3 im;dy it follows that

Y 9. <Z n,-j¢,-j> is a boundary in  S5,(X,)
=1 7
and

g:’;i*(xa ) =0 in Hn(Xb)

i

i-

i

Thus, Y 7, x, isin R, R = kernel of g, and g is an isomorphism. O

1.28 Lemma. If A < S"is a subset with A homeomorphic to I*,0 < k < n, then

{Z for j=0

S"—A) =
( ) 0 for j>0.

Proof. Proceeding by induction on k, if k = O then A4 is a point and S" — A is
homeomorphic to R" from which the conclusion follows. Assume then that
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the result is true for k < m and let
h:A-1"
be a homeomorphism. Split the m-cube I™ into its upper and lower halves by
setting
= {(xy,. ., X)) € 1™ Xy > 0} and I” = {(xq,...,x,) € I"™|x, <0}
sothat I* n I~ is homeomorphic to I™~*. For the corresponding decomposi-
tion of A denote by A* = h™'(I*)and A~ = h™*(I7). The set S" — (A* N A7)

may be written as the union of two sets (S" — A*) U (S" — A7) satisfying the
requirements of the Mayer— Vietoris sequence. So there is an exact sequence

Hj (8" — (A" A A7) > Hy(S" — A) > H{(S" — A" )@ Hy(S" — A7)
- Hy(S" = (A* " A7)).
By the inductive hypothesis, for j > 0 the end terms are both zero. This yields
an isomorphism
1my—Am§ymy—Aweuuy—Aw

So if x € H{(S" — A) and x # 0, then either i (x) # 0 or i_(x) # 0. Suppose
iy(x) # 0. Now repeat the procedure by splitting 4* into two pieces whose
intersection is homeomorphic to I™ !, In this manner a sequence of subsets

of $" may be constructed 4 = 4, 2 4, 2 4; 2 -*- having the property that
the inclusion

S"— AcCS, — A,

induces a homomorphism on homology taking x into a nonzero element of

H{(S" — A,), and furthermore that (); 4; is homeomorphic to I™~*.

Now every compact subset of (S" — (7);4;) will be contained in some
(S" — A,). Thus the isomorphism of Lemma 1 27 factors through the direct
limit

ﬁmmW—A@

so that this direct limit must also be isomorphic to Hy(S" — (), 4;). By the
construction, the element of this direct limit represented by x is nonzero;
however, by the inductive hypothesis the group H;(S" — (), 4;) = 0. This
contradiction implies that no such element x exists and HS" — ) =0.

For the case j = 0, the Mayer—Vietoris sequence yields a monomorphism
rather than an isomorphism. If x and y are points in §" — 4 with (x — y) #0
in Hy(S" — A), then the above argument may be duplicated to imply that
(x — y) must be nonzero in Hy(S" — (); 4;), @ contradiction. O

1.29 Corollary. If B < S" is a subset homeomorphic to S* for 0 <k <n—1,
then H,(S" — B) is a free abelian group with two generators, one in dimension
zero and one in dimensionn — k — 1.



1. Singular Homology Theory 33

Proof. Once again inducting on k, note that for k = 0, S$* is two points and
S" — B has the homotopy type of $"~*. Since H,(S"!) satisfies the descrip-
tion, the result is true for k = 0. Suppose the result is true for k — 1 and write
B = B* uB~,where B* and B~ are homeomorphic to closed hemispheres in
S* and B* n B™ is homeomorphic to $¥~!. The Mayer- Vietoris sequence of
the covering
S"—(B* " B")=(S"— B*)u(S"— B")
has the form
Hy(S" = B )Y@ H,,,(S" — B7) » H,,,(S" — (B* n B))
- Hy(S" — B)
- H(S"— B*)® H{S" — B").

For j > 0, both of the end terms are zero by Lemma 1.28. The resulting
isomorphism furnishes the inductive step necessary to complete the proof.
O

This result may now be applied to prove the following famous theorem.

1.30 Theorem (Jordan-Brouwer Separation Theorem). An (n — 1)-sphere im-
bedded in S" separates S" into two components and it is the boundary of each
component.

Figure 1.13

<o G

Figure 1.14
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Proof. Let B < S" be the imbedded copy of $"7*. Then by Corollary 1.29,
H,(S" — B) is free abelian with two basis elements, both of dimension zero.
So S" — B has two path components. B is closed, so $" — B is open and hence
locally pathwise connected. This implies that the path components are com-
ponents.

Let C, and C, be the components of " — B. Since C, U B is closed, the
boundary of C, is contained in B. (Here we mean by the boundary of C,, the
set 8C, = C, — C?). The proof will be complete when we show that B < &C,.
Let x € B and U be a neighborhood of x in $*. Since B is an imbedded copy
of "%, there is a subset K of U n B with x € K and B — K homeomorphic
to D" ! (Figure 1.13).

Now by Lemma 1.28 H,(S" — (B — K)) = Z with generator in dimension
zero. Thus, $" — (B — K) has one path component. Let p, € C,, p, € C, and
yapathin §" — (B — K) between p, and p,. Since C, and C, are distinct path
components in S" — B, the path y must intersect K. As a result, K contains
points of C; and C,.

We have shown that an arbitrary neighborhood of x contains points of
both C, and C,, hence x is in the boundary of C, and the proof is complete.

O

One final application is the Brouwer theorem on the invariance of domain.

1.31 Theorem. Suppose that U, and U, are subsets of S" and that h: U, - U,
is a homeomorphism. Then if U, is open, U, is also open.

Note. It should be observed that this is a nontrivial fact. Of course, it is
obviously true if “open” is replaced by “closed,” or if the homeomorphism is
assumed to be defined over all of S". This need not be true in spaces in general.
For example, let W, = (3,1] and W, = (0,4] be subsets of [0,1]. If h: W, —
W, is given by h(x) = x — 4, then h is a homeomorphism, W, is open, but W,
is not. It should be evident that there is no extension of h to a homeomor-
phism of [0, 1] onto itself.

Proof. Suppose x, = h(x,) is some point in U,. Let V; be a neighborhood of
x, in U; with ¥; homeomorphic to D" and JV; homeomorphic to S" . Set
V, = h(Vy) and denote by dV, = h(0V,), so that JV, is a subset of S"
homeomorphic to $"~* (Figure 1.14).

Then by Lemma 1.28 S" — V, is connected, while by Theorem 1.30
S" — 0V, has two components. So S" — dV; is the disjoint union of S" — V,
and V, — 0V,, both of which are connected. Hence, they are the components
of $" — 0V,. This implies that V, — dV, is open, contained in U,, and x, €
V, — dV,. Hence, U, is open. O



CHAPTER 2
Attaching Spaces with Maps

The purpose of this chapter is to develop the basic theory of CW complexes
and their homology groups. An equivalence relation on a topological space
is seen to produce a new space whose points are the equivalence classes. This
gives a means of attaching one space to another via a mapping from a sub-
space of the first to the second. The case of particular interest is that of
attaching a cell to a space via a map defined on the boundary. This leads
naturally to the definition of CW complexes. To serve as tools in the study of
these spaces, relative homology groups are introduced and the excision theo-
rem is proved. It is shown that the relative groups of adjacent skeletons
produce a finitely generated chain complex whose homology is the homology
of the space, and this is applied to compute the homology of real projective
spaces.

Recall that a relation ~ on a set A4 is an equivalence relation if the following
are satisfied:

(i) a ~a,
(i) a~b=b~a,
(i) a~bb~c=an~c,

for all a, b, and c in 4. Such a relation on 4 gives a decomposition of 4 into
equivalence classes. On the other hand, a decomposition of 4 into disjoint
subsets defines an equivalence relation on A (a ~ b<>a and b are in the
same subset) under which these subsets are the equivalence classes. Denote
by A/~ the set of equivalence classes under ~. By the quotient function
n: A —> A/~ we mean the function which assigns to a € 4 the equivalence
class containing a.

More generally, if f: 4 —» B is a function of sets, there is naturally asso-
ciated an equivalence relation on A. Specifically, a; ~ a, if and only if f(a,)=

35
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f(a,). In particular if B = 4/~ for some equivalence relation ~, and f = =,
then we recover the original relation ~ in this way.

Now suppose ~ is an equivalence relation on a topological space X. The
quotient space X/~ may be topologized by defining a subset U € X/~ to be
open if and only if #7*(U) is open in X. Note that under this topology, ©
becomes a continuous function.

Since our main interest is in Hausdorff spaces, we will want to restrict our
attention to those equivalence relations on a Hausdorff space X for which the
quotient space X/~ is Hausdorff. For example define an equivalence relation
on[—1,1]bya~ —aif|a] < 1l anda ~ afor all a. Then the images of 1 and
— 1 in the quotient space cannot be separated by mutually disjoint open sets.

If X is a topological space define

D={(xx)xeX}S X xX

the diagonal in X x X. Recall that X is Hausdorff if and only if the diagonal
is a closed subset of X x X. Now let ~ be an equivalencc relation on X
and denote by A the diagonal in (X/~) x (X/~). Note that the continuous
function

TX X XX>(X/~)x(X/~)

has
(m x )~ A) = {(x, )X ~ y}.

This subset of X x X is the graph of the relation. The relation ~ on X is
closed if and only if its graph is a closed subset of X x X. It is evident from
the above that if X/~ is a Hausdorff space, then ~ is a closed relation on X.
We now show that the converse is true whenever X is compact.

2.1 Proposition. If ~ is a closed relation on a compact Hausdorff space, then
X/~ is Hausdorff.

Proof. Recall that a subset of a compact Hausdorff space is closed if and only
if it is compact. Denote by p, and p, the projection maps of X x X onto the
first and second factors, respectively. Let C be a closed subset of X and
G € X x X the graph of ~. Then

p2(pH(C)NG) = {ye X|y ~ xfor some x € C}
= 1 Y (n(C)).

Now p;}(C) n G is closed, hence compact, and so p,(p;!(C) n G) is compact,
hence closed. Thus, for any closed C < X, n~}(n(C)) is closed in X; hence,
n(C)is closed in X/ ~.

If X and y € X/~ are distinct points, then they are closed in X/~ since
they are images of single points in X. Thus, 7 7!(X) and = ~!(¥) are disjoint
closed subsets of X. Since X is compact Hausdorff, it is normal, and there
exist open sets U, V¥, in X containing n*(x) and n~!(¥), respectively, with
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UnV = Let U and V' be the complements of U and V, so that n(U’) and
n(V") are closed subsets of X/~. Then their complements X/~ — n(U’) and
X/~ — (V') are open, disjoint and contain X and ¥, respectively. Thus, X/~
is Hausdorfl. O

EXERCISE 1. (a) Give an example of a closed relation ~ on a Hausdorff space X such
that n: X — X/~ is not a closed mapping.

(b) Give an example of a closed relation ~ on a Hausdorff space X such that
X/~ is not Hausdorff.

If a partial relation ~ is given on a space X, it is possible to associate with
~" a specific equivalence relation on X. Define an equivalence relation ~ on
X by x ~ yif there exists a sequence xg, ..., X, in X with xq = x, x, = y, and

(1) Xipp =X OT
(1) X;44 ~'x; or
(iil) x; ~" ;44

for each i. Then ~ is the equivalence relation generated by ~'. It is the least
equivalence relation that preserves all of the relations from ~',

For example, let X = §", n > 1, and define ~ to be the least equivalence
relation on S" for which x ~ —x for all x. The graph of ~ in §" x §" is the
union of the diagonal D and the antidiagonal D’ = {(x, —x)|x € $"}. This is
obviously closed; hence, "/~ is a compact Hausdorff space called real pro-
Jjective n-space, RP(n).

Suppose 4, X, and Y are spaces with A < X and XnY = J. Let f: 4 >
Y be a continuous function. We consider X U Y as a topological space in
which X and Y are both open and closed, carrying their original topologies.
Let ~ be the least equivalence relation on X U Y such that x ~ f(x) for all
x € A. The identification space X U Y/~ is the space obtained by attaching X
to Yvia f: A — Y. Itiscustomary todenote X U Y/~ by X u, Y.

EXERCISE 2. Suppose in the above that X and Y are Hausdorff spaces and 4 is closed
in X. Then show that ~ is a closed relation.

2.2 Corollary. If X and Y are compact Hausdorff spaces, A is closed in X and
f+A— Y is continuous, then X U, Y is a compact Hausdorff space. O

It is not difficult to see that there is a homeomorphic copy of Y sitting in
X v, Y. We denote by it Y - X U, Y the homeomorphism onto this sub-
space; i may be thought of as the composition of the inclusionof Yin X U Y
followed by the quotient mapn: X U Y » X U, Y.

A case of particular importance is when X = D" and 4 = $"! = 6D". The
space D" U, Y is called the space obtained by attaching an n-cell to Y via f.
When it may be done without causing confusion, we will denote D" U, Y
by Y,.
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DZ

Figure 2.1

EXAMPLE. Let X = D?, 4 = §' = 0D? and Y be a copy of S! disjoint from X.
Let f: A > Y be the standard map of degree two given in complex coordi-
nates by f(e") = ¢?”. The identification space X U, Y is then the real projec-
tive plane, RP(2).

The homology groups of this space may be computed by applying the
Mayer- Vietoris sequence. In the interior of D? pick an open cell U and a
point p contained in U (see Figure 2.1). Setting ¥ = RP(2) — {p}, consider
the Mayer— Vietoris sequence of the covering {U, V}. U n V and V both have
the homotopy type of S?, whereas U is contractible. In the portion of the
sequence given by

H,(UnV)S H(U)® H(V) 5 H,(RPQ))
&’ &’

Z Z

it is easy to check that f is an epimorphism. A generating one-cycle in U n V,
when retracted out onto the boundary, is wrapped twice around S* since f
has degree two. Thus, « is @ monomorphism onto 2Z, and H,(RP(2)) =
ZRZ =2,

Moreover, the connecting homomorphism

Hy(RP(2)) 5 H,(U " V)

is a monomorphism whose image is the kernel of o, so H,(RP(2)) = 0. All
higher-dimensional homology groups are easily seen to be zero, and RP(2) is
pathwise connected, so its homology is completely determined.

The technique used in this example may easily be adapted to prove the
following proposition:

2.3 Proposition. If f: S"™* - Y is continuous where Y is Hausdorff, then there
is an exact sequence
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o Hy (S B HL(Y) S H(Y) S Hyo (ST -
S Ho(S"™) > Hy(Y) @ Z —~ Hy(Y,), 0

This exact sequence shows how closely related are the homology groups
of Y and Y,. If an n-cell has been attached to Y, then H,(Y) 5H W(Yr) is
a monomorphism with cokernel either zero or infinite cycle. In this sense
we may have created a new n-dimensional “hole.”” On the other hand,
H,_(Y)5H,_ y(Y;) is an epimorphism with kernel either zero or cyclic, so
the effect of this new n-cell may have been to fill an existing (n — 1)-dimen-
sional “hole” in Y. Away from these dimensions, the addition of an n-cell does
not affect the homology.

Let (X, A) be a pair of spaces and Y = point. Then there is only one map
AL Yfor A # . The space X U, Y is then denoted by X/A4 because it can
be pictured as the spaced formed from X by collapsing A to a point. Note
that if X is compact Hausdorff and A4 is closed in X, then X/A is compact
Hausdorff.

2.4 Proposition. If X and W are compact Hausdorff spaces and g: X - Wisa
continuous function onto W such that for some wq € W, g~ *(wg) is a closed
set AC X, and for w # wy, g~ (w) is a single point of X, then W is homeo-
morphic to X/A.

This follows immediately from the following more general fact.

2.5 Proposition. Suppose X, Y, and W are compact Hausdorff spaces and A is
a closed subset of X. Let f: A —> Y be continuous and g: X v Y - W continu-
ous and onto. If for eachw € W, g~ (w) is either a single point of X — A or the
union of a single point y € Y together with f~(y) in A, then W is homeomor-
phicto X u; Y.

Proof. If m: X UY - X U, Y is the identification map, g may be factored
through = to give a commutative triangle

Xuy—2sw

N/

XUf

where k is induced by g. Then k is one to one and onto by the properties of
g. To see that k is continuous, let C be closed in W, Then &k ~}(C) is closed if
and only if #7*k~!(C) is closed. But n7*k™*(C) = g~*(C), which is closed
since g is continuous. Since X U, Y and W are compact Hausdorff spaces, k
is a homeomorphism. O
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ExaMpLE. Consider S"~! as the boundary of D" and let h,: D" — S"™! —» R" be
a homeomorphism. Let z € S" and set h,: " — {z} —» R" to be the homeomor-
phism given by stereographic projection. Now define a function

z if xes™t

g: D" = 5" by g(x) = {h;‘hl(x) xeD"—S" L.

Then checking that g satisfies the hypothesis of Proposition 2.4 with 4 =
$"~! we conclude that D"/S"~* is homeomorphic to S™. Thus, S” may be viewed
as the space given by attaching n-cell to a point.

Many of the spaces which concern algebraic topologists may be con-
structed in a similar fashion, that is, by repeatedly attaching cells of varying
dimensions to a finite set of points. Before giving a formal definition, we
consider a number of important examples.

ExaMPpLE. Recall that RP(n) = $"/~, where ~ is the least equivalence rela-
tion on S$" having x ~ —x for all x. Denote by n: $* - RP(n) the quotient
map. What space is produced by attaching an (n + 1)-cell to RP(n) via n?

Regard $" < $"*! by identifying (xi,...,X,,;) € S with (x,,...,X,,;,0) €
S"*!. This induces an inclusion map i: RP(n) » RP(n + 1), of a closed subset.
Write $"*! as the union of two subsets E"*! U E**! which correspond to the
upper and lower closed hemispheres, that is, E*** n E™** = §",

There is a homeomorphism g: D"*'— E"*!. Denote by f,: D""'>RP(n+1)
the composition of the maps

prt S Ertt c st A Rp(n 4 1),

where h is the quotient map on S"**.
Thus, we have a mapping of the union

Sl

D" U RP(n) ——— RP(n + 1).

It is not difficult to check that f, wiis onto; in fact, f; is onto. Note that for
z e RP(n + 1), f{ }(2) is either a single point of D"*! — S" or a pair {x, — x} in
S”, the latter being true if and only if z lies in the subspace RP(n). Thus, the
hypotheses of Proposition 2.5 are satisfied and we conclude that RP(n + 1)is
homeomorphic to D"** U, RP(n), the space given by attaching an (n + 1)-cell to
RP(n) via 7.

Suppose X and Y are topological spaces and x5 e X, y,€ Y are base
points. In X x Y there are the subsets {x,} x Y and X x {y,}. Define X v
Y, the wedge of X and Y, to be the union of these two subsets,

X x {yo}u{xe} x Y.

ExaMPLE. Denote by I the unit interval in R?, I = {0,1}. The n-cube
"< R" has dI"= {(x,,...,X,)| some x; =0 or 1}.

SoI™ x I"=1I"""and
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o(I™*m) = (@I™ x I"yu (I™ x I").

Let z,eS™ and z,eS$" be base points. There exists a map of pairs
[ erty - (8™, z,,), which is a relative homeomorphism; similarly there is
ag:(I" ¢I")— (8", z,). Taking cartesian products gives a map

fxgI™xI"> 8™ x S"
To see what happens on d(I™ x I") note that
I — oIty = (I™ — oI™) x (I" — aI™).

From the properties of f and g, f x g maps this one to one onto
(S"—z,) x (" —2z,)=8"x §"—(S" x {z,} v {z,} x ")
=Sm>(S'l_vaSﬂ‘

Furthermore, ' x g maps (I"*") onto S™ v S", so by Proposition 2.5, $™ x
S" is homeomorphic to the space obtained by attaching an (m + n)-cell to
S§™ v S" via the map

aIm") = ST Sy S,

S§™ x S"is called a generalized torus.

ExaMPLE. For each integer n identify R?" with C" and denote the points by
(z4,-++,2,)- Then $?"~* = C" is given by

S ={(zy,...,z,) Y |z ? = 1}

Define an equivalence relation on $**7! by (z,,...,z,) ~ (z},...,2,) if and
only if there exists a complex number 4 wth |A| = | such that z} = iz,, ...,
z, = /z,. This is a closed relation, and the space $?"7!/~ is denoted
CP(n — 1), (n — 1)-dimensional complex projective space. [This because its
complex dimension is (n — 1), real dimension (2n — 2).] Recall that in the
case of real projective space, a point on the sphere determined a unique real
line through the origin and the point was set equivalent to all other points on
that line, that is, the antipodal point. In the complex case, a point on the
sphere determines a unique complex line through the origin and the point is
identified with all other points on that line.

Exercise 3. Let f: S?"7' - §2"7!/~ = CP(n — 1) be the identification map. Show that
the space formed by attaching a 2n-cell to CP(n — 1) via f is homeomorphic to CP(n).

For the case n = 1, any two points in S! are equivalent; hence, CP(0) is a
point. Now CP(1) is formed by attaching D? to CP(0), which must yield S2.
Thus, CP(1) is homeomorphic to S2. A matter of particular interest is the
identification map

S35 83/~ = CP(1) = §%.
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This map
h: §3 - §?

is called the Hopf map and is of particular importance in homotopy theory.

ExaMPLE. In the same manner as for the complex number field, we may
identify R* with the division ring of quaternions by (x,,x;,X3,X,) = X, +
ix, + jx3 + kx,. This identifies R*" with H", and the sphere

S47t = {(oty, ... 0,) e HY Y o2 = 1.

On $*"~ ! set (ay,...,q,) ~ (a},...,a,) if there exists a y € H with |y| = 1 such
that af = yay, ..., o, = ya,. Then $**7 !/~ is HP(n — 1), (n — 1)-dimensional
quaternionic projective space. As before we find that HP(0) = pt, HP(1) ~ §*
and HP(n) is the space given by attaching a 4n-cell to HP(n — 1) via the
identification map S**~! >HP(n— 1). The identification map h: S’ >HP(1)=
S* is once again called the Hopf map.

We now want to compute the homology groups of some of these examples.
Leaving the real projective spaces for later in this chapter, first consider the
generalized torus $™ x S" and assume m, n > 2.

Recall that S™ x S"is given by attaching an (m + n)-cell to S™ v S". Denote
by —z, and —z, the antipodes of the base points z,, € $™ and z, € S" (see
Figure 2.2). Define

U=S"v $"—{—z} and V=S8"vS —{-z,}

Then {U, V} gives an open covering of S™ v §*, U admits a deformation
retraction onto S™, and V admits a deformation retraction onto S". Finally,
note that U ~ V has the homotopy type of a point. Thus, in the Mayer—
Vietoris sequence for this covering we have

H(S™)® H(S") =~ H(S" v §")  for j>O0.

Therefore, H,(S™ v §") is a free abelian group of rank three having one basis
element of dimension zero one of dimension m and one of dimension ».
Now by Proposition 2.3 there is an exact sequence

<o H(S™ ) T HY(S™ v §") > H(S™ x §") > Hy_y(S™*" ™) = -

Figure 2.2
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Since m,n>2,m+n—1>mand m+n—1>n It follows that f, is the
zero map in positive dimensions. On the other hand, if i = m + n, the con-
necting homomorphism

H(S™ x §")— H,_,(S™*""")

must be an isomorphism. This information may be combined with special
arguments for dimensions zero and one to prove the following:

2.6 Proposition. H,(S™ x S"), m, n > 0, is a free abelian group of rank four
having one basis element of each dimension 0, m, n, and m + n. O

Note. This is our first encounter with a nonspherical homology class.
Let 2 € H,(S*) ~ Z be a generator. An homology class § € H,(X) is spherical
if there exists a map f:S*— X such that f,(x)=f. Specifically, if fe
H,(S* x S*) is a generator, then g is not spherical. Although we are not
equipped to prove this at the present time, the basic reason is that §is a
product of two one-dimensional homology classes, while o € H,(S?) is not.

Next consider complex projective space CP(n). For n=0, 1 we know
H(CP(0)) =~ H(pt) and H,(CP(1)) = H,(S?).

2.7 Proposition

Z for i=0,2,4,...,2n
H CP z b b b b
{CP(m) {0 otherwise.

Proof. We proceed by induction on n. From the remarks above, the result is
true for n = 0 or 1. So suppose it is true for n — 1 > | and recall that CP(n)
may be constructed by attaching a 2n-cell to CP(n — 1) via the identification
map f: $?"7' - CP(n — 1). By Proposition 2.3 this yields an exact sequence

o H(S*" ) 5 H(CP(n — 1) 5 H(CPm) S Hiy (577 - -
for i > 0. For strictly algebraic reasons the homomorphism f, must be zero

in positive dimensions. So for i > 1, this gives a collection of short exact
sequences

0— H{(CP(n — 1)) 2 H(CP(n) 3 H;—,(5*"™") - 0.
These, together with the induction hypothesis, the fact that j, is an epimor-

phism in dimension one and the fact that CP(n) is pathwise connected, com-
plete the inductive step and the result follows. O

2.8 Proposition

Z for i=0,4,8,...,4n
0 otherwise.

H(HP(n) ~ {
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Proof. The proof of this is entirely analogous to that for Proposition 2.7. []

With these examples in mind we now develop some of the basic properties
of spaces constructed in this way. To do so it is necessary to introduce the
relative homology groups, a useful generalization initiated by Lefschetz in the
1920s. The concept is entirely analogous to that of the quotient of a group by
a subgroup. If A4 is a subspace of X then we set two chains of X equal modulo
A if their difference is a chain in 4. In particular a chain in X is a cycle
modulo A if its boundary is contained in A. This reflects the structure of
X — A and the way that it is attached to A. In a sense, changes in the interior
of A, away from its boundary with X — A, should not alter these homology
groups.

To introduce the necessary homological algebra, let C = {C,, d} be a chain
complex. D = {D,,d} is a subcomplex of C if D, = C, for each n and the
boundary operator for D is the restriction of the boundary operator for C.
Define the quotient chain complex

C/D = {CH/D'I’ al}’
where 0'{c} = {c} for {c} the coset containing c. For convenience the prime

will be omitted and all boundary operators will continue to be denoted by 6.
There is a natural short exact sequence of chain complexes and chain maps

0-D>C5C/D—0,
where i is the inclusion and 7 is the projection. From Theorem 1.13 this leads
to a long exact sequence of homology groups
= H(D) S H,(C) B H(C/D) S H, (D) 55+

For clarity denote by { } the equivalence relation in C/D and by { ) the
equivalence relation in homology.

To see how the connecting homomorphism A is defined let {c} be a cycle
in Z,(C/D). To determine A(<{{c}>), represent {c} by an element ¢ € C, having

dc e D,_;. Of course, dc € Z,_,(D) and hence represents a class in H,_,(D).
Thus, we have

A({{c}>) = (dc).

More generally, if E € D < C are chain complexes and subcomplexes,
there is a short exact sequence of chain complexes and chain maps

0-D/E-C/E-C/D->0
In the corresponding long exact homology sequence
> H,(D/E) - H,(C/E) - H,(C/D)* H,_,(D/E) > -

the connecting homomorphism is given by A'({{c})) = ({dc}>, which may
be viewed as the composition

H,(C/D)5 H,_,(D)™ H,_,(D/E).
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This is natural in the sense that if E' = D' = C’ are chain complexes and
subcomplexes and f: C — C’ is a chain map for which f(D) € D’ and f(E) =
E', then the induced homomorphisms on homology groups give a transfor-
mation between the long exact homology sequences in which each rectangle
commutes.

By a pair of spaces (X, A) we mean a space X together with a subspace
A< X. If (X, A)is a pair of spaces, S,(4) may be viewed as a subcomplex of
S(X). The singular chain complex of X mod 4 is defined by

SdX, A) = S,(X)/S,(A).

The homology of this chain complex, the relative singular homology of X
mod A, is thus given by

H,(X, A) = H,(S,(X)/S,(4)).

From the previous observations any pair (X, A) has an exact homology
sequence

o H(A) S H(X) S H(X,4) S H,_,(4) >

In this sense H_(X, A) is a measure of how far i,: H (4)—> H,(X) is from
being an isomorphism. That is, i, is an isomorphism of graded groups if and
only if H*(X, A) = 0. Thus, we have immediately the following:

2.9 Propeosition. If (X, A) is a pair for which A is a deformation retract of X,
then H (X, A) = 0. O

More generally if (X, 4, B) is a triple of spaces, that is, B< 4 < X, there
results a short exact sequence of chain complexes

0—-S5,(4,B)— S (X,B)— S,(X,4)—0

which yields the corresponding long exact sequence of relative homology
groups. It is conventional to define S () = 0 so that H (X, &) = H,(X) and
all homology groups may be viewed as groups of pairs.

Given pairs (X, A) and (Y, B) a map of pairs f:(X,A)— (Y,B) is a con-
tinuous function f: X — Y for which f(4) € B. Note that for such a map
f+(5,(A4)) = S,(B), so that there is associated a homomorphism

J#: Su(X, 4) > S,(Y, B)

which is a chain map, hence also a homomorphism on the relative homology
groups, Note that the homomorphisms of degree zero in the exact sequence
of a triple are induced by the inclusion maps of pairs.

Two maps of pairs f, g: (X, A) —> (Y, B) are homotopic as maps of pairs if
there exists a map of pairs

F: (X xI,Ax1I)-(Y,B)

such that F(x,0) = f(x) and F(x, 1) = g(x). Note that this says that in contin-
uously deforming f into g, it is required that at each stage we map A into B.
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2.10 Theorem. If f, g: (X, A) — (Y, B) are homotopic as maps of pairs, then
f« = 94 as homomorphisms from H (X, A) to H (Y, B).

Proof. As before define iy, i,: (X,4)—> (X x I,A x I) by iy(x) = (x,0) and
i;(x) = (x, 1) and note that it is sufficient to show that i, , and i, , are chain
homotopic.

Using the same technique as for the absolute case of Theorem 1.10 we
construct a natural homomorphism

T: Sy(X) = Spia(X x 1)
having
OT + TC =iy, — iy,

and observe that the restriction of T has T(S,(4)) € S,.:(A4 x I). Thus, there
is induced the desired chain homotopy

T:S,(X,A)—> S, 1 (X x I, 4 x I). 0

ExampPLE. To illustrate the difference between maps being absolutely homo-
topic and homotopic as maps of pairs, consider the following example. Let
X =[0,1], 4 ={0,1},and Y = S*, B = {1}. Define

g X-Y

by f(x) = e and g(x) = 1. Then f and g are maps of pairs (X, 4) = (Y, B)
and f and g are absolutely homotopic as maps from X to Y but they are not
homotopic as maps of pairs.

EXERCISE 4. (The five lemma) Suppose that

2 2% 23 24

c, c, C, G Cs
fo sz Jf3 Jf4 st
Dl B DZ B2 D3 B3 D4 Ba D5

is a diagram of abelian groups and homomorphisms in which the rows are exact and
each square is commutative. Then show

(i) if /5, f, are epimorphisms and f5 is a monomorphism, then f; is an epimorphism;
(i) if f5, f, are monomorphisms and f, is an epimorphism, then f; is a mono-
motphism.

Note that, as a special case of this exercise, if f;, f3, f4, and f5 are isomorphisms, then
f3 is an isomorphism.

As pointed out before it seems that those points of 4 which are not close
to the complement of 4 in X (see Figure 2.3) make no contribution to the
relative homology group of the pair (X, A). This property is formally set forth
in the following excision theorem.
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X

Figure 2.3

2.11 Theorem. If (X, A) is a pair of spaces and U is a subset of A with U
contained in the interior of A, then the inclusion map

(X -U,A-U)—>(X,A4)
induces an isomorphism on relative homology groups
i HJ(X—-UA-U)-> H/(X,A).

That is, such a set U may be excised without altering the relative homology
groups.

Proof. Denote by % the covering of X given by the two sets X — U and Int 4.
By assumption their interiors cover X; thus, their interiors also cover 4 and
we set %' to be the covering of A given by {4 — U, Int A}. Then by Theorem
1.14 the inclusion homomorphisms of chains

i: SY(X) - S(X) and i SY(A)—> S (A)

both induce isomorphisms on homology.
Considering S,/'(4) as a subcomplex of S¥(X) there is a chain mapping of
chain complexes

J: SYX)SE(A) = S(X)/S(A) = S, (X, A).
The chain mappings i, i, and j give rise to the following diagram of homol-
ogy groups
= Hy (S, (4) = Hy(Sy (X)) = Hy(S{(X)/SY (4)) » H,—1(S) (4)) -

o H(4) - H(X) - H(X,4) - H, (A) =

Since i}, and i, are isomorphismis, it follows from the five lemma (see Exercise
4) that j_ is an isomorphism.
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Now we can write S¥(X) as the sum of two subgroups
SY(X)= S, (X — U) + S,(Int A),
but not necessarily as a direct sum. Similarly
SY'(4) = S, (4 — U) + S,(Int A).
Then by elementary group theory
SHX)/SE(A) % S,(X = UYS,(A — Uy = 5,(X — U, 4 - U)
Composing this isomorphism with the chain map j there is induced on hom-
ology the desired isomorphism
Hy(X — U, A — U)> Hy(X, A). 0
A short exact sequence of abelian groups and homomorphisms
0-45B%Co0

is split exact if f(A4)is a direct summand of B.

EXERCISE 5. Suppose 0 — A4 L B%C—0 is short exact. Then the following are
equivalent:

(i) the sequence is split exact;
(ii) there exists a homomorphism f: B — A with f o f = identity;
(iii) there exists @ homomorphism g: C —» B with g o g = identity.

Let X be a space and y a single point. Denote by a: X — y the map of X
into y. Then there is the induced homomorphism on homology

. H (X)— H(y).

Denote the kernel of a, by H*(X). This subgroup of H,(X) is the reduced
homology group of X. Note that since H;(y) = 0 for i #0, H/(X)= H(X) for
i # 0. Furthermore, if X # (J, then a,, is an epimorphism so that Hy(X) is
free abelian with one fewer basis element than Hy(X). Note thatif f: X > Y
is a map, then f: H*(X) — H,(Y). For example, H,(S") is free abelian with
one basis element in dimension n.

2.12 Proposition. If xq € X, then H (X, xo) = H,(X).

Proof. In the exact homology sequence of the pair (X, x,) the homomor-
phism Hyxy)— H;(X)is a monomorphism for each i. Thus, the long sequence
breaks up into a collection of short exact sequences:

0— Hy(xo) 3 H{(X) 5 H{(X,x) 0.

The map a: X - x4 induces «,: H(X)— H;(x,) which splits the sequence.
Thus there is a homomorphism B: Hi(X,x,) — Hi(X) with j,f = identity.
This f is then an isomorphism onto the subgroup H(X). O
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A
Figure 2.4

A subspace 4 of a space X is a strong deformation retract of X if there exists
amap F: X x I - X such that

(1) F(x,0)=xforall xe X;
(i) F(x,l)e Aforall xe X;
(ii) F(a,t)=aforallaes Aandt el

EXERCISE 6. Let X be the space given by the unit interval together with a family of
segments approaching it as pictured in Figure 2.4. If A is the unit interval, show that
A is a deformation retract of X but not a strong deformation retract.

2.13 Proposition. Let (X, A) be a pair in which X is compact Hausdorff, A is
closed in X and A is a strong deformation retract of X. Let n: X — X/A be the
identification map and denote by y the point n(A) in X/A. Then { y} is a strong
deformation retract of X/A.

Proof. Denote by F: X x I - X the map given by the fact that A4 is a strong
deformation retract of X. We must exhibit a map Fi(X/A) x I » X/A
having F(%,0) = %, F(%,1) =y for all Xe X/4 and F(y,t) =y for all teI.
Thus, it would be sufficient to define a map so that the following diagram is
commutative:

X x1 X

[nxnd

X/A) x I —— X/4

Sodefine F = 7o Fo (n x id)7!. To see that this is single valued, let (X, 1) €
(X/A) x I. Then

(r x id)"!(%, 1)

isjust (x,t)if x ¢ A andis A x {t}if x € A. So if x ¢ A, this is obviously single
valued. If x € A, note that F(4 x {t}) = 4 and n(4) = y. Hence, F is single
valued.

To show that F is continuous, let C < X/A be a closed set. Then
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X

Figure 2.5

F™' on~!(C)isclosed in X x I, hence compact. Thus, (n x id) o F~! o n7(C)
is compact in X/A x I, hence closed. Therefore, F is continuous. d

2.14 Theorem. Let (X, A) be a pair with X compact Hausdorff and A closed in
X, where A is a strong deformation retract of some closed neighborhood of A
in X. Let m: (X, A) > (X/A, y) be the identification map. Then

n HJ(X,A)— HJ(X/A,y)

is an isomorphism.

Proof. Let U be a compact neighborhood of 4 in X which admits a strong
deformation retraction onto A (see Figure 2.5). Applying Proposition 2.13 to
the pair (U, 4) we observe that {y} is a strong deformation retract of n(U).
Thus, in the exact sequence of the triple (X/A4, n(U), y),
i H"(T((by),y) - Hn(X/A’y) - Hn(X/A’ T((U)) - Hn—l(n(U)? Y) -
it follows that H (n(U),y) = 0. Hence, the inclusion map of pairs induces an
isomorphism
H(X/A,y) =~ H(X/A,1(U)).

Recall that since X is compact Hausdorff, it is also normal. Now Int U is
an open set containing the closed set 4, so there exists an open set V' with
A < Vand V < Int U. Thus, V may be excised from the pair (X, U) to induce
an isomorphism

HJ (X — V,U— V)= H(X,U)
Since A is a strong deformation retract of U, it follows from the exact se-
quence that
H,(X,A) ~ H(X,U).

These two isomorphisms may be combined to give
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H(X,A)~ H(X — V.U - V).

In similar fashion the set 7(V) may be excised from the pair (X/A4, n(U)) to
give an isomorphism

H(X/A,y) = H(X/A,n(U)) * H(X/A — n(V),n(U) — n(V)).

Now note that since V is a neighborhood of the set 4 which was collapsed,
the restriction of the map = gives a homeomorphism of pairs

(X = V.U = V) > (X/A — n(V),n(U) — n(V)),

and so an isomorphism of their homology groups. All of these combine to
give the desired isomorphism

H(X,A) =~ H(X/A4,)). O

2.15 Corollary. If (X, A) is a compact Hausdorff pair for which A is a strong
deformation retract of some compact neighborhood of A in X, then

H,(X,A) = H(X/A). O

If f: (X, A) - (Y, B) is a map of pairs such that f maps X — A4 one to one
and onto Y — B, then [ is a relative homeomorphism. Under certain condi-
tions on the pairs a relative homeomorphism will induce an isomorphism of
relative homology groups.

2.16 Theorem (Relative homeomorphism theorem). If f:(X,A)—(Y,B)is a
relative homeomorphism of compact Hausdorff pairs in which A is a strong
deformation retract of some compact neighborhood in X and B is a strong
deformation retract of some compact neighborhood in Y, then

fe HJA(X, A) > H(Y, B) is an isomorphism.

Proof. Consider the diagram of spaces and maps, where n and =’ are the
identification maps and f' = ' o f ot L

x L, v

x4 - ymB

As in the proof of Proposition 2.13 it is easy to see that f’ is single valued and
continuous. Since f is a relative homeomorphism, f’ is one to one and onto.
But X/A4 and Y/B are compact Hausdorff spaces, so f' is a homeomorphism.

Denoting x, = n(A) and y, = n'(B) there is the corresponding diagram of
relative homology groups and induced homomorphisms:
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H.(X,4) —— H(Y,B

T [";

H(X/A, xs) —~ H(Y/B,y,)

By Theorem 2.14 the homomorphisms n, and n are isomorphisms. Also f,
is an isomorphism since f' is a homeomorphism. Thus

fo HA(X,A) > H(Y,B) isan isomorphism. O

ExaMpLE. (1) There is a relative homeomorphism
f1(D", 8" > (8", 2),

where z is any point in §”. Both pairs satisfy the hypotheses of Theorem 2.16,
so therc is an isomorphism

fo H(D", 8"Y) > H (8", 2) = H(S").

(2) To see that the hypotheses of the theorem are actually necessary, con-
sider the following example. Using the curve sin(l/x) construct a space as
shown in Figure 2.6a, where X is the curve together with those points “in-
side,” and A is the boundary. Let Y = D? and B = 0D? = S (Figure 2.6b).
Then (X, A) and (Y, B) are compact Hausdorff pairs. By flattening the patho-
logical part of A it is possible to define a map of pairs f: (X, A) — (Y, B) which
is a relative homeomorphism. However, it cannot induce an isomorphism on
homology because H,(X, A) = 0 and H,(Y, B) = Z. The result fails because 4
is not a strong deformation retract of some compact neighborhood of 4 in X.

The fact that H,(X, A) = 0 is an easy consequence of the exact sequence of
the pair (X, A),

= Hy(A) = Hy(X) > Hy(X, A) > Hi(A) =+

Now X is contractible, so H,(X)=0. On the other hand, if } n; is a
1-chain in A, the sum must be finite. Since the curve A is not locally connected,
the union of the images of these singular simplices cannot bridge the gap in

(@ (b)
Figure 2.6
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the sin(1/x) curve. Thus, the chain is supported by some contractible subset
of A, so that if it is a cycle, it is also a boundary. Therefore, H,(A) = 0 and by
exactness H,(X, A) = 0.

2.17 Lemma. Let f:S"' - Y be a map, where Y is a compact Hausdorff
space. If Y, is the space obtained by attaching an n-cell to Y via f, then Y is a
strong deformation retract of some compact neighborhood of Y in Y.

Proof. Let U = D" be the subset given by U = {x € D"| ||x| > %}, and observe
that U is a compact neighborhood of $"~* in D". Define a map F: (U u Y) x
I-UuYby

X if xeY

Fxt) (1—t)x+t~_x_ if xeU.
lIxl
Then F is continuous, F(x,0) = x and F(x,1)e $" ' U Y for all x, and if
x e S" ' UY, then F(x,t) = x for all t. Thus, F is a strong deformation retrac-
tionof Uu Yonto S" 'L Y.
Now let n: D"U Y — Y, be the identification map and consider the dia-
gram

Uu)x1 —£ Uuy

nUuY)x I --Z5 fUuy)

As before define
F=noFo(nxid™

Then F’ is well defined, continuous and gives a strong deformation retraction
of the compact neighborhood n(U u Y) of n(Y) onto =(Y). d

Note. Denote by h the composition
2 pruySy,.
Then h gives a map of pairs h: (D",$"™') - (Y, Y), which is a relative homeo-
morphism. The hypotheses of Lemma 2.17 and Theorem 2.16 are satisfied, so
we may conclude that

h,:H(D"S"'Y>HJY,Y)

is an isomorphism. Therefore, H,(Y;, Y) is a free abelian group on one basis
element of dimension n.

Suppose that D}, ..., Df is a finite number of disjoint n-cells with bound-
aries 77!, ..., 87! Foreach i=1,..., klet £z S'"! - Y be a map into a
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fixed space Y. Define ~ to be the least equivalence relation on Df u---uU
D{ u Y for which x; ~ fi(x;) whenever x; € S'!.
Then DY U -+~ U Dy U Y/~ may be denoted Y}
attaching n-cells to Y via f,, ..., fi.
Conversely, if (X, Y) is a compact Hausdorff pair for which there exists a
relative homeomorphism

F:Dlu---uD ST U uSI ) - (X, Y),

1, the space obtained by

then X is homeomorphic to ¥, , where f; = F|s;™".
A finite CW complex is a compact Hausdorff space X and a sequence
X°<c X' << X" = X of closed subspaces such that

(i) X° is a finite set of points;
(i) X*is homeomorphic to a space obtained by attaching a finite number of
k-cells to X* 71

Note that X* — X*7! is thus homeomorphic to a finite disjoint union of open
k-cells, denoted E¥, ..., E’,‘k. These are the k-cells of X. Using the convention
that D° = point and dD° = S™! = (, the requirements (i) and (ii) may be
replaced by the condition that for each k there exist a relative homeomor-
phism

f:Dfo--uDE SO U SET) o (X X,

v
It is easy to verify that the cells of X have the following properties:
(@) {E¥k=0,1,...,n;i=1,...,r.} is a partition of X into disjoint sets;

(b) for each k and i the set EX — E* is contained in the union of all cells of
lower dimension;

(¢ Xt = Uk’sk Ej’.‘;

(d) for each i and k there exists a relative homeomorphism

h: (D% S*~') - (E}, E¥ — EY).

These properties characterize finite CW complexes and will be used as an
alternate definition whenever it is convenient. The closed subset X* is the
k-skeleton of X. If X" = X and X" ! # X, then X is n-dimensional.

ExaMPpLE. It should be evident that for a given space there may be many
different decompositions into cells and skeletons (see Figure 2.7). For exam-
ple, let X = S§2.If z is a point in §2, then S? may be described as the space
obtained by attaching a 2-cell to z. This gives S2 a cell structure in which
there is one 0-cell and one 2-cell (Figure 2.7a).

If z' is another point in $S2 and 2 is a simple path from z to z’, we have a
cell structure with two O-cells, a 1-cell, and a 2-cell (Figure 2.7b). Why was it
necessary to include the 1-cell @ when two vertices were used?

Further cells may be included as shown in the third figure, in which there
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(a) (b) ©

Figure 2.7

are two O-cells, three 1-cells, and three 2-cells (Figure 2.7¢). While there is
considerable freedom in assigning a cell structure to a finite CW complex,
it is apparent that any change in the number of cells in a certain dimen-
sion dictates some corresponding change in the number of cells in other
dimensions.

Note that one apparent advantage CW complexes have over simplicial
complexes is that considerably fewer cells are generally necessary in the de-
composition of a complex.

2.18 Proposition. If X and Y are finite CW complexes, then X x Y is a finite
CWcomplex in a natural way.

Proof. Suppose the cellular decompositions of X and Y are given by {E¥} and
{E}'}. The obvious candidate for a cellular decomposition for X x Y is the
collection {E¥ x E}}. First note that this is a partition of X x Y into a finite
number of sets homeomorphic to open cells. Also

E¥ X E} — Ef x E} = E¥ x E} — E* x E}
= (Ef — E}) x E} VE} x (E] — E})),
which is contained in the union of all cells of dimension less than k + [,

To check the third requirement we may assume that there are relative
homeomorphisms

f:U*o1%) > (EXEX —EYy and  g:(I',0') > (E},E} — E}).

Then f x g:(I*",0I**") - (E¥ x E}, E¥ x E} — Ef x E}) gives the desired
relative homeomorphism. OJ

ExaMmpLES. (1) Taking the decomposition of S! into one 0-cell (z) and one
1-cell («) as in Figure 2.8a, the torus S x S§! is naturally given the decompo-
sition into one O-cell (z x z), two 1-cells (z x @ and a x z) and one 2-cell
(% x «) (Figure 2.8b).

(2) Recall that RP(0) = pt and RP(k) is obtained by attaching a k-cell to
RP(k — 1). Thus, RP(n) is an n-dimensional finite CW complex with one cell
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St St x s
(@) (b)

Figure 2.8

in each dimension 0, ..., n. Moreover, the k-skeleton of RP(n) under this
structure is just RP(k).

(3) Similarly CP(n) is a finite CW complex of dimension 2n with one cell in
each even dimension, 0,2, 4, ..., 2n. Also CP(k) = the 2k-skeleton of CP(n) =
the (2k + 1)-skeleton of CP(n) for 0 < k < n. An anologous structure may be
given to quaternionic projective space.

If X is a finitt CW complex with cells {E¥}, then a subset 4 of X is a
subcomplex of X if whenever A N E¥ # ¢ then EX < A. Note that if 4 is a
subcomplex of X, then A is a closed subset of X and inherits a natural CW
complex structure.

2.19 Theorem. If A is a subcomplex of a finite CW complex X, then A is a
strong deformation retract of some compact neighborhood of A in X.

Proof. Denote by N the number of cells in X — 4. We proceed by induction
on N. If N = 0 the result is trivial and if N = 1 we may adapt the proof of
Lemma 2.17 to give the desired result.

So suppose the result is true for any finite CW pair (Y, B) where the number
ofcellsin Y — Bis N — 1. Let ET be a cell of maximal dimension in X — A,
and define X, = X — ET'. Note that X, must be a finite CW complex since
any cell in X — E[" either lies in A so that its boundary must also lie in A or
has dimension less than or equal to m. In either case its boundary does not
meet ET". Moreover, A is a subcomplex of X, .

Now the number of cells in X; — 4 is N — 1, so by the inductive hypothe-
sis there exists a compact neighborhood U, of 4 in X, such that A4 is a strong
deformation retract of U, .

There is a relative homeomorphism

¢: (D™, 8™"') - (ET, ET' — ET')

given by the structure of X as a finite CW complex (Figure 2.9). Define the
radial projection map
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Figure 2.9

r:D™ — {0} - s™!

by r(x) = x/|x]\.
Since U, is a compact subset of X, ¢ }(U;) is a compact subset of S™!.
Now define

V={¢(x)xeD™ |x|| =% and r(x)eg " (U,)}.

Then V is a compact subset of X which admits a strong deformation retrac-
tion onto U, n V. Thus, Vv U, is a compact subset of X which admits a
strong deformation retraction onto A.

We must now make certain that the interior of ¥V L U, contains 4. Let y be
in the interior of U in X,. If y is not in ¥, y must also be in the interior of U,
in X, hence also in the interior of V' U U,. So suppose y is in V or, in other
words, y in (E" — ET"). Now ¢! of the interior of U, in X, is an open subset
of S™~! containing the compact set ¢ ~'(y). By the description of V it follows
that ¢ ~'(y) is contained in the interior of ¢ ~' (V) in D™ Thus, y must be in the
interior of V in E".

Therefore, we have shown that any point in the interior of U, in X lies in
the interior of ¥V L U, in X. So VU U, gives the desired compact neighbor-
hood of A in X. O

Note that as an immediate consequence of this result, the conclusions in
Theorem 2.14, Corollary 2.15, and the relative homeomorphism theorem,
Theorem 2.16, will hold whenever the spaces involved are finite CW pairs.
These have some very useful applications.
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2.20 Proposition. If X is a finite CW complex and X* is the k-skeleton of X,
then H(X* X*™') = 0 for j # k and H(X*, X*™") is a free abelian group with
one basis element for each k-cell of X.

Proof. X*7! is a subcomplex of X* so by Theorem 2.19 it is a strong deforma-
tion retract of a compact neighborhood in X*. Since X is a finite CW com-
plex, there is a relative homeomorphism

p:(D¥ U uDE ST U U ST - (XY XRY).
Then applying Theorem 2.16 yields the desired result from the corresponding
fact about
HDYv oDk S-S 0

For any finite CW complex X define
C(X) = H(X* X* ).

Then C(X) =) C(X) is a graded group which is nonzero in only finitely
many dimensions, moreover it is free abelian and finitely generated in each
dimension. The connecting homomorphism of the triple (X*, X*7!, X*~2) de-
fines an operator

0: G(X) = G- (X).
Recall that these connecting homomorphisms may be factored in the follow-
ing way:
H,_,(X'™?)

/ e

H(X5 XY —  H_(X*',Xx2) —2  H_,(Xt2 x93,

Heoy (X*1)

where 0’ and d” are boundary operators for the respective pairs and i and j
are inclusions of pairs. S0 d 0 § = j, 0 0" 0 i, o d". But 8" o i, is the composi-
tion of two consecutive homomorphisms in the exact sequence of the pair
(X*7', X*~?) and hence must be zero. Therefore, d o d = 0 and {C,(X),8}isa
chain complex. Of course, the obvious question is then to ask how the hom-
ology of this chain complex is related to the singular homology of X.

2.21 Theorem. If X is a finite CW complex, then
H (C (X)) = H(X) for each k.
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Note: This is an extreme simplification. The chain complex used in defining
H_(X) was, in general, a free abelian group with an uncountable basis. Here
we have reduced the chain complex, not only to a finite basis, but these
generators are in one-to-one correspondence with the cells of X.

Proof. We must analyze the composition
8 8
Hio (X5, X5) = Hy(X5 X571 S He (X971, X572

and show that kernel ¢,/image 0, = H (X).
First consider the diagram

H (X*1, X*2)
I
Hepy (X5, X950 H(X' X5y B B (X5 X1 0

F
& 3

Hk—l(Xk—l, Xk-2)

in which i, and j, are induced by inclusion maps of pairs. The row and
the column are exact sequences of triples in which the zeros appear by
Proposition 2.20. The triangle commutes by the naturality of the boundary
operators.

Let xekernel 0,. Then 8;i(x) =0 and ix)= j(y) for some ye
H (X**! X*~2). Note that since j, is a monomorphism, this y is uniquely
determined. Thus, we define a homomorphism

¢: kernel 8, » H (X**', X*72)

by ¢(x) = y.

If y' € H(X**!, X*72) then j,(y') is in the image of i, because i, is an
epimorphism. So there exists an x’ € H(X* X*7') with i (x) = j(y'). Then
C2(x") = C3i(x’) = 03j,(y') = 0so x" is in the kernel of J, and ¢(x') = y’. We
conclude that ¢ is an epimorphism.

Since i, o 0, =0, it is apparent that the image of J, is contained in the
kernel of ¢. On the other hand, let x € kernel J, with ¢(x) = 0. But the fact
that j, is a monomorphism implies that i (x) = 0. Then by exactness x is in
the image of ¢,. Hence, we have shown that ¢ is an epimorphism with kernel
given by the image of ¢, and we conclude that

¢: ker 0,/im 8, > H(X**', X*72).
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In the remainder of the proof we show that

H (X**', X*?) 2 H(X).

Suppose that X is n-dimensional, so that
H(X) = H(X", X ")
Consider the sequence of homomorphisms
Hy(X)=H(X", X ') > H(X", X°) > - > H(X", X*7?),
each induced by an inclusion of pairs. In general, a homomorphism in this
sequence is a part of the exact sequence of a triple
H( X, XY o Hy(X", XY) > H(X", X) 5 He_ (X, XY,

where i < k — 2. But by Proposition 2.20 for this range of values of i the first

and last group must be zero. Hence, each homomorphism in the sequence is
an isomorphism and

H(X) = H(X", X*°2).
Similarly the homomorphisms
H(X*', X)) 5 H(X*2, Xk "2) > - > H (X", X*7?)
induced by inclusion maps are all isomorphism, so that
H(X", X*"2) ~ H(X*', X*2)

and the proof is complete. O

A map f: X — Y between finite CW complexes is cellular if f(X*) = Y* for
each integer k. If f: X — Y is cellular, then f defines a map of pairs

(X5 XA o (YR YR
for each k, and hence a chain mapping
Jo CX)— C(Y).

One should check that the homomorphism induced by f, on the homology
of the chain complex C,(X) corresponds with the homomorphism induced
by f on H,(X) under the isomorphism of Theorem 2.21.

We now want to compute the homology of RP(n). To do this, give §" the
structure of a finite CW complex so that the k-skeleton is S. That is

SPcStc-cScc8m
so that there are two cells in each dimension, denoted by EX and E . Simi-

larly give RP(n) the structure of a finite CW complex so that RP(k) is the
k-skeleton. Thus
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RP0) = RP(l) = --- = RP(k) = - < RP(n)

and there is one cell in each dimension.

With these structures, the identification map n: §" — RP(n) is cellular. By
Proposition 2.20 the group C,(RP(n)) is infinite cyclic for 0 < k < n and we
denote a generator by e;. In order to compute the homology of RP(n) we
need to know what the boundary operator d: C,(RP(n)) » C,_,(RP(n)) does
to the element ;.

To answer this question we first study the situation in S". Recall that the
antipodal map of ", A: 8" — S, is cellular and furthermore maps E% homeo-
morphically onto E* and vice versa for each k. Denote by F* the composition
of maps of pairs

(Dk Sk 1) (Ek Sk 1) incl (Sk, Sk_l).
If we choose a generator i, of H (D¥, S*7!), then Fi(i;) = e, is a basis element

in H,(S*,8*7!) = C,(S"). We view ¢, as the basis element corresponding to the
cell E% . Since the following diagram commutes

(Dk Sk 1) (Ek Sk 1) incl (Sk,sk—l)

A A

(Ek Sk 1) incl (Sk,sk—l)

we may take the element 4 (e,) to be the basis element corresponding to the
cell EX. Thus, C,(S") is the free abelian group with basis {e,, 4,(e;)}.

To determine the boundary operator d: C,(S") — C,_,(S") consider the fol-
lowing diagram:

H,(s%,5) — Hy (8,572

N

H,_,(8*7")

Ay A, A,

H-,(8*7)

N

H(s'.51) = H (847, 572)

in which each triangle and rectangle is commutative. The homomorphism A,
in the center has been previously computed, specifically it is multiplication by
(—1)*. Starting with ¢, € H,(S*,$*!) = C,(S") we have
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0A (&) = i,0'A(e) =i,A,0(e)
= (= 1)",0'(e) = (— D}d(ey).
Thus, ¢, + (— 1)**' 4,(e,) is a cycle in C(S").
In fact, the set of cycles in C,(S") is an infinite cyclic subgroup generated by
e, + (— 1)**' 4 (e;). Before proceeding with the proof, note that this algebraic
fact is entirely reasonable from a geometric viewpoint. Since ¢, and A,(e;)
correspond to the upper and lower halves of the sphere S*, and they are being

combined in such a way that the respective boundaries will cancel each other,
geometrically we see this generating cycle as the sphere S* itself. So suppose

0=0(n,e, + nyAle))

=n,0¢ + n,04,¢

= n,0¢; + (— 1)*n, 0,

= (n, + (= 1)*n;)de,.
Since C,_,(S") is free abelian, it must be true that either de, = 0 or (n; +
(— 1)*n,) = 0. Suppose de, = 0. Then also 94 ¢, = 0 and J: G(S") = G, (S")
is identically zero. But we have observed that there are nontrivial cycles in
C._.(8"), so if k > 1, these cycles must bound because H,_,(S") = 0 in this
range. [It is also easy to see that d: C,(S") » C,(S") cannot be identically zero

because every element of Cy(S") is a cycle.] This contradiction implies that
de, # 0and we conclude that n, + (— 1)*n, = O or n, = (— 1)¥*'n,. Therefore

nie +n,Ae =n e+ (— l)kHA*ek)

as desired.
Since H,(S") = 0 for 0 < k < n, we must have

a(ek+1) =t + (— 1)k+1A*(ek))~

Once again, this formula may be shown to hold as well for k = 0. We may as
well suppose the sign is +.

The identification map =: (S¥,$*7!) —» (RP(k), RP(k — 1)) is a relative
homeomorphism on the closure of each k-cell. The generator e, could have
been chosen so that e; = m,(e,). Then

n(Age) = (o A)le) = . (e) = e.
Therefore, the boundary operator in the chain complex C,(RP(n)) is given by
0(ek+1) = On(ery) = Ty 0(epyy)
= n e + (= 1)1 4,e)
= e+ (1)1

_ J2e for kodd
o for keven.
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This completely determines the boundary operator in the chain complex
C(RP(n)) so that we may apply Theorem 2.21 to conclude the following:

2.22 Propeosition. The homology groups of real projective space are given by
zZ for i=0
Z, Jor iodd, 0<i<n
for iodd, i=n
0 otherwise. O

H(RP(n) ~

Recall that the rank of a finitely generated abelian group A is given by

rank A = lub{n| there exists a free abelian subgroup B < A4 with
basis having exactly n elements}.

If A and B are isomorphic abelian groups, then rank 4 =rank B.If H is a
subgroup of a finitely generated abelian group G, then

rank G/H = rank G — rank H.

2.23 Proposition. If (X, A) is a finite CW pair, then H (X, A) is a finitely
generated abelian group.

Proof. By Corollary 2.15 we know that H, (X, A)~ H_(X/A), and since
HJ(X/A) = ﬁ*(X/A) @ Z, it is sufficient to show that H_(X/A4) is finitely gen-
erated. X/A may be given the structure of a finite CW complex directly from
the structure of X and A. The cells of X /A correspond to the cells of X which
are not in A together with one 0-cell corresponding to A, thus dim(X/A4) <
dim X. It follows from Theorem 2.21 that H,(X/A) is the quotient of a finitely
generated abelian group by a subgroup, and is nonzero for only finitely many
values of k. Therefore, H,(X/A) is finitely generated and the result follows.
O

For a space X the ith Betti number of X, b,(X), is the rank of H;(X). From
Proposition 2.23 we see that if X is a finite CW complex, b,(X) is finite for all
i, and nonzero for only finitely many values of i. It was noted previously that
by(X) is the number of path components in X. In a corresponding sense the
number b{(X) is a measure of a form of higher-dimensional connectivity of X.
The Euler characteristic of X is given by

2X) =Y (= 1yb(X).

1

2.24 Proposition. If X is a finite CW complex with a; cells in dimension i, then
2 (= Dy = y(X).

Proof. Exercise 7. O
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EXERCISE 8. If X and Y are finite CW complexes, show that

x(X x Y) = p(X) x(Y).

There are a number of important questions related to attaching cells, CW
complexes, and maps that have not been addressed in this chapter. When
examining the Hopfinvariant in the context of products in Chapter 5, we will
show that, if f, and f, are homotopic as maps of §” into X, then the iden-
tity map of X extends to a homotopy equivalence between X u, D"*' and
X Uy, D"*'. A matter of broader significance is whether a mapping between
finite CW complexes can be approximated by a cellular map. In this setting
the word “approximation” refers to homotopy rather than the more tradi-
tional notion of distance in some metric. A proof of the following important
result may be found in Brown [1988].

2.25 Theorem (Cellular Approximation Theorem). If X and Y are finite CW
complexes, A is a subcomplex of X, and f: X — Y is a map that is cellular on
A, then f is homotopic to a cellular map via a homotopy that does not change
the restriction of f to A. g



CHAPTER 3
The Eilenberg—Steenrod Axioms

Following the necessary algebraic preliminaries, we introduce the homology
of a space with coefficients in an arbitrary abelian group. Combined with the
results of the previous chapters this establishes the existence of homology
theories satisfying the Eilenberg—Steenrod axioms for arbitrary coefficient
groups. The corresponding uniqueness theorem is proved in the category of
finite CW complexes. Finally, the singular cohomology groups are intro-
duced and shown to satisfy the contravariant analogs of the axioms.
If A, B, and C are abelian groups, a mapping

$:AxB-C
is bilinear (or is a bihomomorphism) if
éla, + a,,b) = ¢(a,,b) + ¢la,,b)
and
#la, by + by) = dla,b,) + ¢la, by).

Note that if A x B is given the usual product group structure, ¢ will not be a
homomorphism except in very special cases.

Denote by F(A x B) the free abelian group generated by A x B. An ele-
ment of F(A x B) has the form

Y nia;, b)),

where the sum is finite, a;, € A, b, € B and n, is an integer. Let R(4 x B) be the
subgroup of F(A4 x B) generated by elements of the form

(a, + ay,b) —(a,,b) — (a,,b)

or
(aa bl + bZ) - (a9 bl) - (a9 b2)’
65
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where a, a,, a, € A and b, b,, b, € B. Then the tensor product of A and B is
defined to be
A® B = F(A x B)/R(4 x B).

Note that if ¢: A x B — C is any function, there exists a unique extension
of ¢ to a homomorphism
¢ F(A x B)-»C.

Moreover, if ¢ is a bihomomorphism, then ¢’ is zero on the subgroup
R(A x B), so that there is induced a homomorphism

¢":A®B-C,

which is uniquely determined by ¢.
This universal property with respect to bilinear maps can be used to char-
acterize the tensor product. There exists a bilinear map

T:AXxB->A®B

defined by taking (a,b) into a ® b, the coset containing (a,b). Given a bi-
homomorphism ¢: A x B — C we have seen that there exists a unique hom-
omorphism ¢”: A ® B — C such that commutativity holds in

AxB—»C

N

A® B

On the other hand, if G is abelian and t": A x B — G is a bihomomorphism
whose image generates G, such that any bihomomorphism ¢: 4 x B— C can
be lifted through G, then G is isomorphic to A ® B.

Since the elements (a, b) generate F(A x B), it follows that the elements
a® b generate A ® B. Note that in A ® B we have

na®b)=(na)® b = a® (nb) for any integer n;
0®b=0=a®0 for all a and b;
(a, +a,)®(b, +by))=(a, +a,) @b, +(a, +a,)®b,
=a,®b +a,®b, +a, @b, + a, ® b;.

3.1 Proposition. There is a unique isomorphism
0:A® BxB® A
such that (a ® b) = (b ® a).
Proof. Define u: A x B> B® A by u(a,b) = b® a. This is a well-defined

bihomomorphism. Thus, there exists a unique homomorphism 0: A ® B —
B® A with 8(a® b) = b ®a. Similarly there exists a homomorphism
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0':B® A— A® Bsuch that §'(b ® a) = a ® b. Then the compositions 6 o ¢’
and 0’ o § are the identity on respective generating sets, and it follows that 0
is an isomorphism with inverse 6. O

3.2 Proposition. Given homomorphisms f: A - A’ and g: B —» B, there exists a
unique homomorphism

f®g:A®B—-> A ®B
with
f®gla®b) = f(a)® g(b).

Proof. Define a mapping p: A x B> A ® B by p(a,b) = f(a) ® g(b), and
observe that p is well defined and bilinear. Thus, there exists a unique homo-
morphism 0: A ® B —» A’ ® B with 0(t(a, b)) = p(a,b) or la®b) = f(a) ®
g(b). This 6 is the desired f ® g. O

3.3 Propositions.(a)If f: A—> A, f"" A > A" andg: B— B',g’": B — B", then
(fef)®(g g =(f"®g)e(f®9):

b) f Ax) A, thnA® Bx) (A;® B);

(c) if for each j in some index set J there is a homomorphism f;: A — A’ such
that for any a € A, f{a) is nonzero for only finitely many values of j, then
we can define Y fi: A— A'. For any homomorphism g: B — B’ it follows
that

CHOI=Y(;®g);

(d) for any abelian group A,Z ® A = A;
(e) if A is a free abelian group with basis {a;} and B is a free abelian group
with basis {b,}, then A ® B is a free abelian group with basis {a; ® b;}.

Proof. We prove only Part (d). Note that Part (e) follows from Parts (d) and
(b) and Proposition 3.1.

Define u: Z x A - A by pu(n,a) = na. Then p is bilinear, so there exists a
unique lifting : Z® A > A with 0(n ® a) =n-a. Now define 0: A - Z ® A
by 0'(a) = 1 ® a and observe that

00'0)=0(1®a) =a
and
00n®a)=0(na)=1®na=n®a.
Thus, 8 and 8’ behave as inverses on generating sets and 6 is an isomorphism.

a

Now suppose that A’ and B’ are subgroups of 4 and B, respectively. We
want to describe the tensor product A/4’ ® B/B'. Denote by n,: A - A/A’
and n,: B— B/B’ the quotient homomorphisms. Then by Proposition 3.2
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there is a homomorphism
T,®n, A®B—->A/A @ B/B’.

If a’e A" and be B, then n;, ® n,(a’ ® b) = n,(a’) ® n,(b) = 0. Similarly if
ace Aand b' € B', 1, ® m,(a ® b’) = 0. Thus, if we denote by

ijtA' > A and i: B> B,
the inclusion homomorphisms
H =im(i, ® id) + im (id ® i,) < ker 1; ® n,.
This means that 7, ® 7, induces a homomorphism
®: A® B/H— A/A'® B/B.
We now want to show that @ is an isomorphism. Define a function
¥: A/A' x B/B' - A® B/H

by ¥({a},{b}) = {a ® b}, where { } denotes the respective coset. It is evident
that this is well defined, since if a’ € A’, then

Y({a'},{b})={a’® b} =0,
and similarly for b’ € B'. ¥ is also bilinear, so there exists a unique homo-
morphism

6: A/A’ ® B/B - A ® B/H.

The homomorphisms @ and 6 are easily seen to be inverses of each other, so
we have proved the following,

3.4 Proposition. If i;: A’ - A and i,. B — B are inclusions of subgroups, then
A®B

AN @ BB ~ i S id) + imd ® 1) O

EXaMPLE. Z,® Z, = Z,,,, Where (p, q) is the greatest common divisor of p
and g. To see this, let (p,q) =rso that p=r-s,q = r-t with (5,t) = 1. Denote
by pZ < Z the subgroup divisible by p and identify Z, = Z/pZ and Z, =
Z/qZ.
Therefore
Z,82,=2/pZ®Z/qZ

N Z® 7

~im(i;, ® id) + im(id ® i,)

N VA N VA
Timi, +imi,  rsZ +rtZ

=Z = Z(p.q)'

= Z/rZ
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Specifically then
2, ®2,2%2Z,, Z,82,=0, Zg®Z,s = Z,, and so forth.

3.5 Proposition. If A5 B L €0 is an exact sequence, then for any abelian
group D

a®id p®id
—_—

A®D B®D —— C®D-0

is exact.

Proof. Define a function
¢:C x D> B® D/im(zx ® id)
as follows: for (¢,d) € C x D let b € B with f(b) = c. Then set
#lc,d) = {bQ®d},

where { } denotes the coset in the quotient group. If b’ is another element of
B with B(b’) = ¢, then b — b’ e kernel § = image «, so there exists an ae A
with a(a) = b — b’. Then note that

bd} —{b®d} ={(b-b)®d}
= {a(a) ® d}
= {(a®id)(a ® d)}
=0.

This implies that ¢ is independent of the choice of b and so is well defined.
Since ¢ is also bilinear, there is associated a unique homomorphism

B®D
0:CR®D—» —————.
® D~ e ®id)
On the other hand, (f ® id) is zero on the image of (x ® id) so we have a
homomorphism

p®id: B® D/im(z ® id) » C® D.

It is evident that 8 ® id and 8 are inverses. This isomorphism establishes the
desired exactness. O

Note: If we had added a zero to the left of A in Proposition 3.5, the corre-
sponding conclusion would not have been true. That is, in general, tensoring
with D does not preserve monomorphisms. For example, let u: Z - Z be
given by p(n) = 2n, so that g is a monomorphism. However

HRIEZ®Z,»Z®Z,

is zero because (1 ® id)(1 ® 1) = 2® 1) = 1 ® 2 = 0. For this reason we say
that tensoring with D is a right exact functor. In trying to measure the extent
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to which this fails to be left exact, we introduce a useful idea which will be
employed in later results.

Recall that every abelian group A is the homomorphic image of a free
abelian group and denote by F the free abelian group generated by the
elements of A. Then let n: F — A be the natural epimorphism. If R < F is the
kernel of 7, then R must be a free abelian group since it is a subgroup of F.
(The proof that any subgroup of a free abelian group is free is definitely
nontrivial. See Spanier’s book for a proof of this fact.)

Thus, there is a short exact sequence

0—>R—i>F1>A—>O.

This is an example of a free resolution of the group A. In general, a free
resolution of an abelian group A is a short exact sequence

0-G, >G5 A0

in which both G, and G, are free abelian groups. Given a free resolution of 4
and an abelian group D we know by Proposition 3.5 that exactness holds in
j®id ®id

G,®D 2% G,®D 24 4®D 0.

Then define Tor(A4, D) = kernel(j ® id). In a sense, this measures the extent
to which j ® id fails to be a monomorphism.

Exercisk 1. (a) Compute Tor(Z,, Z,) for any integers p and q.
(b) Show that if A4 is free abelian, Tor(B, A) = 0 for any abelian group B.
(c) Show Tor(A, B) is independent of the resolution chosen for 4.

EXERCISE 2. Show that for any abelian groups 4 and B,

Tor(A, B) = Tor(B, A).

Suppose that C = {C,,d} is a free chain complex. That is, each C, is a free
abelian group. For any abelian group G define a new chain complex C ® G
by

C®G={C,®GI®id}.
It is evident that (¢ ® id) o (0 ® id) = 0.
If f: C —» C'is a chain map, the associated homomorphism
fRIECRG-CR®GC
has
(f®id)e @®id)= fod®@id= 8o f®id = (0’ ®id)o (f ® id)
so that f ® id is also a chain map. Suppose T is a chain homotopy between
chain maps f; and f,, that is,
0T+ T3 =f; — f.
Then
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@ ®id(T®id) + TRINE®id) =0Tid + Td®id
=@'T+ To)®id
=i —fo)®id
=fi®id — f, ®id.

Hence, T ®id is a chain homotopy between the chain maps f; ®id and
fo®id.

Now fix the abelian group G. For each pair of spaces (X, A) we may use the
free chain complex S, (X, A) to construct a new chain complex S,(X,4) ® G.
This chain complex, denoted S,(X, A4;G), is the singular chain complex of
(X, A) with coefficients in G. Since there is a natural isomorphism

S,(X,4) ® Z ~ S,(X, A),

we refer to S, (X, A) as the singular chain complex with integral coefficients.
The homology of S,.(X,A4;G) is denoted by H,(X, A;G). Note that if
fi(X,A4) = (X', A") 1s a map of pairs, it follows from the preceding comments
that there is an induced homomorphism

S H(X,A;G) - H (X', A'; G).

In some applications it is desirable to have additional structures on these
homology groups. For example suppose that R is an associative ring and G
is a right R-module. Then S,(X, A; G) may easily be given the structure of a
right R-module in such a way that the boundary operators and induced
homomorphisms are all homomorphisms of R-modules. In particular, if R is
a field, then each H,(X, 4, G) is a vector space over R. Note that for any R we
know that R is a free module over itself, so that S,(X, A;R) is the free R-
module generated by the singular n-simplices of X mod A.

Suppose that (X, 4, B) is a triple of spaces. We have observed previously
that there is a short exact sequence of chain maps

0 - S,(4,B) - S, (X,B)— S (X, A) - 0.

Since each chain complex is free, it follows from Exercises 1 and 2 that the
exactness is preserved when we tensor throughout with G. Thus

0 - S,(4, B;G) - S,(X, B;G) - S (X, 4;G) - 0

1s a short exact sequence of chain complexes and chain maps. There results
the long exact sequence of the triple (X, 4, B) for homology with coefficients
in G.

As in the case of integral coefficients it is easy to show that

H (ot: G) & G for n=0
(Pt G) = 0 otherwise.

Returning to the general case of a free chain complex C, we now consider
the problem of relating the homology of C ® G to the homology of C. For
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example, suppose that x € C, such that px is a boundary for some integer p.
Since C is free, this implies that x must be a cycle, so x represents a homology
class of order p. Let b € C,,, with 6b = px. Note that b is not a cycle unless
x = 0. If we now tensor C with G = Z,, the element b® 1 in C,,; ® Z, has

ORibB®1)=b®1 =px®1 =x®p = 0.

Thus, b ® 1is a cycle in C,,; ® Z,, where b had not been a cycle previously.
In this way we see how torsion common to H,(C) and G produces new
homology classes in H,,,(C ® G).

Before proceeding we note the easily proved algebraic fact thatif f: G - G’
and ¢g: G’ — G are homomorphisms of abelian groups with g o f = identity,
then

G' =im f @ ker g.

As usual we denote by B, < Z, < C, the subgroups of boundaries and
cycles, respectively. If C is a free chain complex, then each B, and Z, will be a
free abelian group. Fix an abelian group G and consider the short exact
sequence

0-2,-C, == B,_, - 0.
I4
First note that since B,_, is free, the sequence splits. That is, if {x;} is a basis
for B,_,, for each i there exists an element ¢; € C, with d¢; = x;. Define y(x;) =
¢; and note that y extends uniquely to a homomorphism which splits the
sequence.

Now since B,_, is free, Tor(B,_,,G) = 0 and the short exact sequence is

preserved when tensored with G,
o®id
0-72,8®6-C,®6G === B,_,®G-0.
y®id
This sequence is also split by the homomorphism y ® id.
On the other hand, the short exact sequence

0 B, <> Z, - H,(C) - 0
is a free resolution of H,(C); hence, it yields the exact sequence
0 — Tor(H,(C),G) 5 B,® G -2, Z,® G- H,(C) ® G — 0.

We want to compute the homology of C ® G, given by kernel ¢ ® id/
image ¢, ® id in the following diagram:
j®id

B®G — Z ®G

93 ®id k®id

8, ®id

Cn+1®G—)Cn®G _&)

Cn—l ® G

8,®id /@id

Z,.,®G
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Note that by the above remarks both i ® id and k ® id are monomorphisms
and 0; ®1id is an epimorphism. Thus, kernel ¢ ® id = kernel J, ® id and
image ¢, ® id may be identified with image j ® id.
Now consider the groups and homomorphisms
[ j®id

0-Tor(H,_,((),G)» B, ®G —— Z,  ®G-H,_(C)®G-0
¢3®id ; y®id

v

C,®G

where the horizontal row is exact. As we have observed, the cycle group in
C,® G is the kernel of (j ® id) o (75 ® id). Since d; ® id is an epimorphism
and kernel j ® id = image g, we have

ker(j®id) o (0, ® id) = (0; ® id)"!(g(Tor(H,-,(C), G))).
Thus, there are homomorphisms

¢3®id

(@; ® id)"'g(Tor(H,_,(C),G)) 5= 9(Tor(H,,(C),G))
for which the composition (6; ®id)o (y ® id) 1s the identity. Combining
these observations we have the cycle group expressed as a direct sum

ker(j ®id) o (&3 ® id) = ker(d; ® id) ® (y ® id)g(Tor(H,-,(C), G)).

Note that the first direct summand may be identified with Z, ® G, while in
the second, both g and y ® id are monomorphisms. Thus, we may identify the
groups of cycles in C, ® G with the direct sum

Zn ® G @ Tor(Hn—l(C), G)

Furthermore, the group of boundaries, which has been identified with the
image of
B,®G—Z,®G,

is contained entirely in the first summand.
Finally, recalling the exactness of

B,®G—Z,®G—H(C)® G -0,

we conclude that the homology of the chain complex C® G is given by
H(C® G)x H(C)® G @ Tor(H,_,(C),G). This completes the proof of the
universal coefficient theorem:

3.6 Theorem. If C is a free chain complex and G is an abelian group, then

H(C® G)~ H,(C)® G & Tor(H,-,(C), G). O

3.7 Corollary. For any pair of spaces (X, A),
H/(X,A;G)~ H(X,A)® G ® Tor(H,_,(X, A),G). 0
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ExampLE. Recall that the integral homology groups of real projective space
are given by

Z fork=0 or for koddand =n
H(RP(n) = < Z, forkodd, O0<k<n
0 otherwise.

Applying Corollary 3.7 to compute H, (RP(n);Z,) we first note that
Tor(Z,,Z,) = Z, and Tor(Z,Z,) = O were results from an earlier exercise.
We are thus able to conclude that

Z, for 0<k<n

H(RP(n), Z;) ~ {0 otherwise

where H (RP(n);Z,) results from H, (RP(n)) ® Z, for k =0 or for k odd,
0 < k < n, and H,(RP(n); Z,) results from two-torsion in H,_,(RP(n)) for k
even0 <k <n

We are now in a position to characterize singular homology in terms of a
set of axioms. Each of these axioms has been established previously as an
intrinsic property of singular homology theory. Our main purpose here is
to show that when restricted to a suitable category of spaces and maps,
these axioms uniquely determine a homology theory. The formulation of the
axioms and the proof of the uniqueness are due to Eilenberg and Steenrod
[1952].

Suppose # is a function assigning to each pair of spaces (X, 4) and integer
n an abelian group ##,(X, A), and to each map of pairs f: (X, A)— (Y, B)
a homomorphism f,: #,(X, A) — #,(Y, B). Suppose further that for each n
there is a homomorphism J: #,(X, A) — #,_,(A). This operation gives a
homology theory if the following axioms are satisfied:

(1) ifid: (X, A) - (X, A) is the identity map, then
id,: #(X, A) - H(X, A)

is the identity homomorphism;
Q) iff:1(X,4)-(X',A),g:(X,A) > (X", A”) are maps of pairs, then

(gof)e=9x° /s
(3) if f: (X, A) = (Y, B) is a map of pairs, then
00 fu=(fla)eo0;

@) ifi: (A, D) — (X, D) and j: (X, &) — (X, A) are inclusion maps, then the
following sequence is exact:

- S A S HX) D X A) S A (A) -

(8) if f, g: (X, A) - (Y, B) are homotopic as maps of pairs, then f, = g, as
homomorphisms,
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(6) if (X, A) is a pair and U < A has U < Int 4, then the inclusion map
(X —U,A—U)—(X,A4) has i; #(X —U,4—-U)> #(X,A) an
isomorphism;

(7) H#,(pt) = 0 for n # 0 [, (pt) is called the coefficient group].

3.8 Theorem (Existence). Given any abelian group G, there exists a homology
theory with coefficient group G.

Proof. Let #,(X,A) = H (X, A; G), singular homology with coefficients in G.
Then each of the axioms has been proved previously. ]

3.9 Theorem (Uniqueness). On the category of finite CW pairs and maps of
pairs, homology theories are determined, up to isomorphism, by their coefficient
groups. That is, if #, and #, are homology theories and h: #, — #, is a
natural transformation (that is, it commutes with induced homomorphisms and
boundary operators) such that h: #;,(pt) — H#;5(pt) is an isomorphism, then h:
HA(X, A) = H)(X, A) is an isomorphism for each integer n and each finite CW
pair (X, A).

Proof. First note that the proofs of Theorems 2.14 and 2.16 (the relative
homeomorphism theorem) only require that singular homology theory sat-
isfy these axioms. So the analogs of these results will hold for any homology
theory.

Denote the zero-sphere S° as the union of two points S° = x U y, and
consider the diagram

Hy) —— Hxvy,x)

H() — = H(xUy,x)
which commutes by the naturality of h. The horizontal maps are excision
maps, so both horizontal homomorphisms are isomorphisms by Axiom 6.

Since the first vertical homomorphism is an isomorphism by the hypothesis,
we conclude that

h: #,(5°, %) = A (5°, %)
is an isomorphism for each k. Now consider the diagram
Hor (8%, %) —— Hy(x) —— H(S®) ——> H(S%x) —— Hi_,()
:Jh :lh lh 2Jf' zlh
Ay (80,%) — T H(x) —— H(S°) —— H(S°, %) —— AL, (X)

where the rows are exact by Axiom 4. By the five lemma (Exercise 4, Chapter
2), h: #,(S°) — #;(S°) is an isomorphism.
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We now prove inductively that h is an isomorphism for spheres of all
dimensions. Suppose h: #,(S""!) — #,(S""!) is an isomorphism, n > 0. The
n-disk D" has the homotopy type of a point, so by using Axiom 5 we have an
isomorphism h: #(D") —» #,(D"). In the commutative diagram

n

HD S T A4S )

HUD" ST — H(S",X)

the horizontal homomorphisms are isomorphisms since they are induced by
relative homeomorphisms, while the vertical homomorphism on the left is an
isomorphism by the five lemma (Exercise 4, Chapter 2). So we conclude that
h: #,(8", x) — #(S",x) is an isomorphism, and again apply the five lemma to
see that h: H#(S") - #/(S") is an isomorphism. This completes the inductive
step.

We are now ready to prove the theorem by inducting on the number of
cells in the finite CW complex, X. Of course the conclusion is true if X has
only one cell, so suppose that h is an isomorphism for all complexes having
less than m cells. Let X be a finite CW complex containing m cells. If dim
X = n, pick a specific n-cell of X and denote by A4 the complement of this top
dimensional cell. Then A is a subcomplex of X having m — 1 cells and there
is a relative homeomorphism

m: (D", $"H) - (X, A).

In the commutative diagram
HD' S —T H(X, A)
X lh

H (D", — H(X, A)

h

the horizontal homomorphisms are induced by relative homeomorphisms, so
they are isomorphisms. The first vertical homomorphism is an isomorphism
by the inductive argument above. Hence

h: #(X, A) - H(X, A)

is an isomorphism for each k. Finally, the five lemma together with the induc-
tive hypothesis imply that

h: H(X) —» H(X)
is an isomorphism. This establishes the theorem for any finite CW complex,

and the similar result for pairs follows by another application of the five
lemma. O
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Note: During recent years, many theories have been developed which sat-
isfy all of the axioms except Axiom 7. These have been called “generalized
homology theories” and include stable homotopy, various K-theories, and
bordism theories. Some of these theories are able to detect invariants which
cannot be detected by ordinary homology. As a result, problems have been
solved by these techniques whose solutions in terms of singular homology
were either extremely difficult or impossible. Certainly any thorough study of
modern methods in algebraic topology should include a significant segment
on generalized homology and cohomology theories.

We now want to introduce singular cohomology theory. If A and G are
abelian groups, denote by Hom(A, G) the abelian group of homomorphisms
from A to G, where (f + g)(a) = f(a) + g(a) foreach ain A. If¢: A > Bisa
homomorphism, there is an induced homomorphism

¢*: Hom(B, G) - Hom(4, G)

defined by ¢*(f) = f o ¢. Note that if y: B— C is a homomorphism, then
(Wog)” =¢”oy”

For a chain complex {C,,d} and an abelian group G, define abelian groups
C" = Hom(C,, G).
Then the boundary operator ¢: C,,,; — C, has
o*: C"» Cc!
and the composition 6% o §* = (0 o 8)* = 0. So this resembles a chain com-
plex except that the indices are increased rather than decreased. This leads us
to define a cochain complex to be a collection of abelian groups and homo-

morphisms {C", 6} where é: C" — C**! and 6 0 § = 0. The homomorphism
o is the coboundary operator.

Note that if {C", 6} is a cochain complex and we define D, = C™" and
¢=90:D,—D,_,,then {D,,0} becomes a chain complex. So the two notions
are precisely dual to each other and the use of cochain complexes is mainly a
convenience.

The basic definitions for chain complexes may be duplicated for cochain
complexes. If {C", 6} and {D", 8’} are cochain complexes, a cochain map f of
degree k is a collection of homomorphisms

f: Cc"— Dn+k
suchthat f o 4 = §' o f. Two cochain maps f and g of degree zero are cochain
homotopic if there is a collection of homomorphisms
T:C'— D!
suchthat 'T + Té = f — g. T is a cochain homotopy.
Note that if {C,,0} and {D,,¢'} are chain complexes and f, g: {C,,0} —
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{D,,0'} are chain homotopic chain maps, then for any abelian group G the
cochain maps

f*,¢* {Hom(D,,G),0'*} - {Hom(C,,G),0*}
are cochain homotopic.

Let C = {C",8} be a cochain complex and define Z"(C) = kernel é: C" —
C™*!, the group of n-cocycles, and B"(C) = image : C"~' — C", the group of
n-coboundaries. The nth cohomology group of C is then the quotient group

H"(C) = Z"(C)/B*(C).
If A= {A"}, B= {B"}, and C = {C"} are cochain complexes and
is a short exact sequence of cochain maps of degree zero, then there exists a
long exact sequence of cohomology groups
- — H"(A) - H"(B) - H"(C) 5 H"*' (4) >+,
where the connecting homomorphism A is defined in a fashion analogous to

the connecting homomorphism for homology.
Now let (X, A) be a pair of spaces and G be an abelian group. Define

S"(X, A;G) = Hom(S,(X, 4),G)
as the n-dimensional cochain group of (X, A) with coefficients in G. Let
3:8"(X,A4;G) - S"*HX, A;G)

be given by § = 0*. This defines the singular cochain complex of (X, A)
whose cohomology is the graded group

H*(X, A;G)

as the singular cohomology group of (X, A) with coefficients in G. Each of the
covariant properties of singular homology becomes a contravariant property
of singular cohomology. In particular, if f: (X, A) — (Y, B) is a map of pairs,
than there is induced a homomorphism

f* H¥Y, B;G) — H*(X, A4, G).

If g: (Y, B) - (W, C) is another map of pairs, then (gf)* = f* o g*.
Let

0-FLHLSKS0

be a short exact sequence of abelian groups and homomorphism which is
split by a homomorphism y: H — F. If G is an abelian group and f is a non-
zero element of Hom(K, G), then n*(f) = fon is a nonzero element of
Hom(H, G) since 7 is an epimorphism. It is evident that i* o 7* = (n o i)* =
0. On the other hand, let h: H - G be a homomorphism such that i*(h) =
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hoi=20.Since h is zero on the image of i = kernel of n, h may be factored
through K. The resulting homomorphism h: K — G will have n*(h) = h.
Thus, the kernel of i* is equal to the image of n*.

Finally, since y o i is the identity on F, (y o i)* is the identity on Hom(F, G).
But this implies that i* is an epimorphism. Therefore, we have completed the
proof of the following.

3.10 Proposition. If 0 —» F LHLZK-0isa split exact sequence and G is an
abelian group, then

i*

0 - Hom(K, G) &> Hom(H, G) 5 Hom(F, G) —» 0

is exact. 0

For example, if (X, A) is a pair of spaces, the sequence
0—8,(A4) > S(X)—>S,(X,4) -0
is split exact since S, (X, A) is a free chain complex. Thus, by Proposition 3.10
0 S%X,A4;G) > S*(X;G) - S*(4;G) -0

is a short exact sequence of cochain complexes and cochain maps. By the
previous remarks, this produces a long exact sequence in singular cohom-
ology,

-+ = HY(X, A;G) > H'(X;G) —» H(A;G) —» H"*Y(X, A;G) — -+ .

It is important to note the necessity of the hypothesis in Proposition 3.10
that the original sequence be split exact. For example, if i: Z — Z is the
monomorphism given by i(1) = 2, then

i*: Hom(Z, Z,) - Hom(Z, Z,)
is zero and thus fails to be an epimorphism. The other conclusions of exact-
ness will hold in general since they were established without using the fact
that the sequence was split. As in the case of the tensor product, this failure

to preserve short exact sequences may be measured.
Let E be an abelian group and take a free resolution of E,

0>R5FSESO.
Then for any abelian group G the sequence
0 — Hom(E, G) © Hom(F, G) > Hom(R, G)
is exact by the proof of Proposition 3.10. Define
Ext(E, G) = coker i* = Hom(R, G)/im i*.

The basic properties of Ext are dual to those of Tor and may be established
in the following exercises:
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EXErcises 3. (a) If E is free abelian, Ext(E, G) = 0.

(b) Ext(E, G) is independent of the choice of the resolution for E.

(c) Ext(E,G) is contravariant in E and covariant in G; that is, given homomor-
phisms f: E - E’ and h: G - G’ there are induced homomorphisms f*: Ext(E',G) —
Ext(E, G) and h,: Ext(E, G) —» Ext(E, G").

(d) f0- A 4 BX C—0is a short exact sequence, then exactness holds in

0 - Hom(C, G) > Hom(B, G) 5> Hom(4, G) - Ext(C, G)

S Ext(B, G) 5 Ext(4,G) - 0.

Since we have defined $"(X, 4; G) = Hom(S,(X, A), G), it is useful to adopt
the following notation: if ¢ is in $*(X, 4; G) and c s in S, (X, A), then the value
of ¢ on c is the element of G denoted by <{¢,c)>. Note that this pairing is
bilinear in the sense that

P1 + 2,60 =<d1, > + <2,
and
{Pey + ) =L +<¢ ).
In particular, for any integer n we have {¢,nc)> = (ng,c). Thus the pairing
produces a homomorphism
S"MX,4;0)® S,(X,A) -~ G
for each n. This homomorphism will be studied in more detail in the next

chapter.
In this notation the boundary and coboundary operators are adjoint; that is,

{@,0c) = {o¢,¢).
(In a somewhat different setting this is called the fundamental theorem of
calculus.) Furthermore, if f: (X, A) - (Y, B) is a map of pairs, ¢ € S"(Y, B; G)
and c € S,(X, A), then
(B f4(0)> =< f* (), 0.
The cochain ¢ € $*(X, A; G) is a cocycle if and only if
{d¢,c'> =0 forall c¢'€3S,,,(X, A),
or equivalently, if
{g,0c'> =0.
Thus, ¢ is a cocycle if and only if ¢ annihilates B,(X, A).
On the other hand, suppose that ¢ = d¢’ is a coboundary, where ¢’ €
S$" (X, A; G). Then
{,c) =<d¢',c) =<¢',dc)
so that if ¢ is a coboundary, then ¢ annihilates Z (X, A).
Now let x € H"(X, A; G) be represented by a cocycle ¢ and y € H (X, A) be
represented by a cycle ¢. Then we define a pairing
{, >2»H"X,4;G)® H(X,A) -G

by {x,y> = {¢,c). To see that this is well defined, let ¢ + é¢" and ¢ + dc’ be
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other choices for representatives of x and y. Then
(g +0¢'sc+0c') =Lp,c) +<6¢',¢c +dc') +<4,0c")
= (¢ ) +{¢’,0c + 00c’) + {0¢,c">
= (¢, ).
This pairing is called the Kronecker index and may be viewed as a homo-
morphism
a: H'(X, A; G) » Hom(H, (X, A), G).

For example, consider the zero-dimensional cohomology of a space X.
S°(X;G) = Hom(S,(X), G) and S,(X) may be identified with the free abelian
group generated by the points of X. Since any homomorphism defined on
So(X) is determined by its value on the basis, we may identify S°(X; G) with
the set of all functions from X to G.

Of course, B°(X;G) = 0, so the cohomology may be determined by iden-
tifying the group of 0-cocycles. Note that ¢ will be a 0-cocycle if and only
if <o¢,c> =<¢,0c> =0 for all ¢ in S;(X). This will be true if and only
if ¢(a(1)) = ¢(c(0)) for every path ¢ in X. Therefore, we have identified
H°(X;G) = Z°(X; G) with the set of all functions from X to G which are
constant on the path components of X. From this description we have the
following.

3.11 Proposition. If X is a topological space and {X,} < is the decomposition
of X into its path components, then

H'(X;6)~ [] G,

aeA
the direct product of copies of G, one for each path component of X. O
There is a natural embedding of G in H°(X; G) defined by sending g € G

into the function from X to G having constant value g. If p 1s a point and
7: X — p is the map of X to p, then

n* H%(p; G) - H°(X; G)
maps H°(p; G) ~ G isomorphically onto this embedded copy of G. As for the
case of homology we define
H%X;G) = H%X;G)/im n*,
the reduced cohomology group of X with coefficients in G.

Essentially all of the results we have established previously for homology
carry over in dual form to cohomology. For example, we have the following.

3.12 Theorem. Let (X, A) be a pair of spaces and U = A a subset with U <
Int A. Then the inclusion map of pairs
(X -U,A-U)—(X,A)
induces an isomorphism
i* H¥(X,A;G)—» H¥X - U, A - U;G).
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Proof. We have observed that
iy S (X -U,A-U)-S (X, A)

induces an isomorphism on homology groups (Theorem 2.11). The following
exercise implies that i, is a chain homotopy equivalence. Thus,

i*: S*(X, 4;G) - SXX — U, A — U;G)

is a cochain homotopy equivalence and i* is an isomorphism. ]

EXERCISES 4. If f/: C — D is a chain map of degree zero between free chain complexes,
such that f induces an isomorphism of homology groups, then f is a chain homotopy
equivalence. [ Hint: Take the algebraic mapping cone C, of f (see page 167). Use the
fact that C; has trivial homology to construct the homotopies.]

3.13 Theorem. If £, g: (X, A) — (Y, B) are homotopic as maps of pairs, then the
induced homomorphisms

f* g* H*(Y,B;G) » H*(X, A; G)

are equal.

Proof. We showed in Theorem 2.10 that
Jos 94 84X, A) = S(Y, B)
are chain homotopic. Therefore
f7.9%: S*(Y,B;G) —» SXX, 4; G)
are cochain homotopic, and it follows that f* = g*. ]

EXERCISES 5. Formulate and prove the Mayer—Vietoris sequence for singular cohom-
ology.

EXERCISE 6. State the Eilenberg—Steenrod axioms for cohomology and prove the
uniqueness theorem in the category of finite CW complexes.

ExaMPLE. We want to compute H*(S", x,; G). First note that H*(S% x,; G) is
isomorphic by excision to

perGy~ {6 for k=0
pLu) = 0 otherwise.

As usual (Figure 3.1) we decompose the n-sphere irto its upper cap E”. and
lower cap E" with x, € S"! = E% n E". Let z be a point in the interior of
E".

Note that since the inclusions x, — E% and x, — E” are homotopy equiva-
lences, the relative cohomology groups H*(E"., x,; G) and H*(E", x,; G) are
both zero. Thus, in the exact cohomology sequence of the triple (S", EZ, x,)
we have an isomorphism
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Xo

Sﬂ

Figure 3.1

H*(S" E"; G) > H¥(S", x,; G).
The point z may be excised from the pair (S", EZ ) to give an isomorphism
H*(S", E";G) S H*(S" — z, E" — z,G).
Now the pair (8" — z, E — z) may be mapped by a relative homeomorphism
to the pair (E7, $"!) so that we have an isomorphism
HYS" — z, E* — 2;G) ~ H*(E".,S" %, G).

Finally, the exact sequence of the triple (E%,S""},x,) yields an isomor-

phism
H*'(8"", X0, G) > HY(E%,, 574 G).
Thus
H*(S", xo; G) = H*"1(S"1, x0; G),

which completes the inductive step to prove that

G for k=n

H*S" x,;G) = i
(5" %0: G) {0 otherwise.

All of these similarities between homology and cohomology might lead
one to ask: why bother? There may be many answers to this question; we
briefly cite only three:

(i) When the coefficient group is also a ring, the cohomology of a space may
be given a natural ring structure. (This is not true for homology groups.)
This additional algebraic structure gives us another topological invariant.

(i) Cohomology theory is the natural setting for “characteristic classes.”
These are particular cohomology classes, arising in the study of fiber
bundles, which have many applications, particularly to the topology of
manifolds.
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(i) There are “cohomology operations,” naturally occurring transforma-
tions in cohomology theory, which have many applications in homotopy
theory.

In Chapter 5 we will define the ring structure in (1) while studying the
relationships between homology and cohomology theory. The topics in (ii)
and (i) are more advanced and will not be dealt with here. Perhaps the best
source for topic (ii) is Milnor [1957]. The original source for topic (iii) is
Steenrod and Epstein [1962]; see also the book by Mosher and Tangora
[1968].

We close this chapter with an extension of the universal coefficient theo-
rem which establishes the first basic connection between homology and co-
homology groups.

3.14 Theorem. Given a pair (X, A) of spaces and an abelian group G, there
exists a split exact sequence

0 — Ext(H,_,(X, A), G) » H"(X, A; G) 5 Hom(H,(X, A), G) - 0.

EXERCISE 7. Prove Theorem 3.14. |



CHAPTER 4

Covering Spaces

The concept of a covering space is a valuable source of examples, applica-
tions, and problems, as well as a basis for new ideas. Our analysis begins with
an exploration of the lifting problem for a map into the base space. When the
mapping is restricted to be a closed loop, the resulting structure is seen to be
the fundamental group, and this provides a framework within which the
lifting properties may be recast in algebraic terms. Continuing with this
connection, the relations among the covering spaces over a given base are
expressed in terms of the subgroups of the fundamental group of the base.
The chapter closes with an examination of the relationship between the fun-
damental group and the first homology group and a discussion of Van
Kampen’s Theorem, a useful computational tool.

A space X is said to be locally pathwise connected if given any x € X and
any open set U about X, there exists a pathwise connected V with x € Int VV
and ¥V < U. Figures 2.4 and 2.6a give examples of spaces that are pathwise
connected but not locally pathwise connected. For the remainder of this
chapter the spaces considered will all be pathwise connected and locally path-
wise connected, unless it is stated otherwise or apparent from the context.

If X is a topological space, a covering space of X is a space X and a
continuous function p: X — X such that

(a) pis onto, and
(b) given any x € X there is a connected open set U about x such that p maps
each component of p~!(U) homeomorphically onto U.

X is the total space, p is the covering projection or covering map, X is the
base space, and U 1s a fundamental neighborhood of the covering.

85
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ExampLES. (1) Consider S* as the complex numbers of modulus one, S' =
{ze C||z| = 1}. The function exp: R' — S' given by exp(t) = ¢*™ forms a
covering space. Given any x € S!, a connected open set U about x that is
properly contained in S! has p~!(U) a countable disjoint union of open inter-
vals in R, each mapped homeomorphically onto U by exp (Figure 4.1).

(2) Recall from Chapter 2, the equivalence relation x ~ —x on S" gives rise
to a quotient map n: $* — RP(n). This is a covering space in which a funda-
mental neighborhood U about x in RP(n) can be taken to be the image under
n of an open disk V about a point of n7!(x) such that V is contained in an
open hemisphere of $”. ¥ and — V will then be the two components of x~*(U).

(3) One can view the torus T2 as a quotient of R? under the equivalence
relation that sets (x,y) ~ (x + m,y + n) for any m, n € Z. The quotient map

g:R? > T?

maps each unit square in the plane onto the torus (Figure 4.2).
The image of the x-axis under g is homeomorphic to S'. For intuitive
purposes we will call this the “horizontal” circle S, in T2, and the orientation

>

Figure 4.1

on o q

0.0y 1.0y

Figure 4.2
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of the x-axis determines a “positive horizontal” direction around T2. Simi-
larly, the image of the y-axis yields a “vertical” circle S, in the torus and a
“positive vertical” direction, once g has been specified. If we set L = {(x,y) €
R?|x or y € Z} to be the lattice in R?, then g maps L onto the union of these
two circles, S, v S,, which intersect in a single point. Both g: R? — T? and
ql.: L - S, v S, are covering spaces.

Exercise 1. Explain why the following functions are not covering spaces:

(@) p:[-1,1]1-[0,1] by p(x) = |x|
(b) h: L —» S! by h(x,y) = e*=x*»
(c) ¢:R*—{(0,0)} > T2 the restriction of q to the punctured plane.

The strength of a covering space p: X — X lies in the facts that X and X
are locally identical, and the preimages in X of fundamental neighborhoods
in X are systematically combined to produce the space X. It is clear from the
examples that the total space and the base space may be significantly differ-
ent in a global sense.

Now let p: X — X be a covering space, and f: Y — X be a continuous
function. A fundamental question that arises in many applications is the
lifting problem: Does there exists a continuous function g: Y — X such that

rpg=f?
X

Y —— X
The local properties of the covering space provide some hope. Specifically,
start with y € Y, and consider x = f(y) € X. Let U be a fundamental neigh-
borhood of x, and select a component V of p~!(U) € X. The continuity of f
provides an open set W about y with f(W)< U. Since p|,: V- U is a
homeomorphism, the composition

) Hflw WX

gives a lift of f|, . In other words, there will always be a lifting on some open
set about any given point of Y. However, the global structure of the spaces
makes it clear that a lifting over all of Y need not exist.

EXERCISE 2. (a) Show that the function f: §' - S! given by f(z) = z* cannot be lifted
to R in the covering space exp: R — S*.

(b) Show that the inclusion map i: RP(2) —» RP(3) cannot be lifted to S* in the
covering space n: $3 — RP(3).

(c) Show that the identity map id: S, v S, —» S, v S, cannot be lifted to L in the
covering space g: L — S, v §..
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We now restrict Y to be a closed interval. For this simple case a lifting will
always exist, and the analysis of the resulting properties will lead us to a new
algebraic tool for solving topological problems.

4.1 Proposition. If p: X - X isa covering space, and f:[0,1] — X is a path in
X, then there exists a lifting g: [0,1] — X for p; i.e., g is a continuous function
and pg = f.

Proof. The preceding discussion shows that if z € p~'(f(0)), then there is an
open set W about {0} and a lift g of f|y with g(0) = z. Moreover, once Z is
selected, and W is chosen so that its image under f lies in a fundamental
neighborhood of f(0), this lifting is uniquely determined.

Define D = {t € [0,1]|f: [0,¢] — X can be lifted to a path in X beginning
at z}. Since W contains an interval about 0, D is nonempty. D is bounded
above by 1, so let d € [0, 1] be the least upper bound of D. We will show that
de D and, in fact,d = 1.

Take a fundamental open set U’ about f(d) in X. Since f is continuous,
there exists an open set W' about d with f(W’') € U'. Furthermore, there is a
point z’e W’ with 0 <z’ <d and z'eD. The lifting of f:[0,2']—= X
determines a point g(z’') in X, and this point in p~!(f(z’)) together with the
fundamental neighborhood U’ permit a lifting of f: [2',d] - X. Since these
liftings agree at z', they may be combined to produce a lifting over the entire
interval [0, d], establishing that d € D.

Suppose d < 1. Then using the same W', there would be point z” € W' with
d < z” < 1. The same argument shows z” € D, and consequently that d is not
the least upper bound of D, contradicting the original choice ofd. Thus d = 1,
D = [0, 1], and the lifting exists. O

It is clear from the above argument that once the initial point f(0) is lifted,
the remainder of the lift is uniquely determined. In fact, a more general
proposition is true:

4.2 Proposition. Let p: X — X be a covering space, and {1 Y — X be a continu-
ous function with Y connected. If g,, g,: Y — X are liftings of f with g,(y) =
g2(y) for some yin Y, theng, = g,.

EXERCISE 3. Prove Proposition 4.2. O

For a covering space p: X — X, fix a point x, in the base space X, and
consider paths in X that begin at x,, i.e., functions f: [0,1] — X with f(0) =
Xo. If X4 is a selected element of p~!(x,), there is unique lift of f to a path in
X beginning at %,. Note that if the original path f in X is a loop, it need not
be the case that the lift of f is a loop in X. In fact it is this variation in the
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0.0 1.0y

Figure 4.3

lifted path that carries information on the loop in the base, and through it,
the topological properties of the base itself.

In the previous example (3), g: R — T2, let X, be the origin in R? and
X = q(%o) in T2 Let f be the loop in T? that wraps once around the torus
in the “positive horizontal” direction and twice around the torus in the “posi-
tive vertical” direction. This loop lifts to a path in R? from X, = (0,0) to (1, 2),
another point in ¢~ (x,) (Figure 4.3).

On the other hand, in example (2) consider RP(2) as S! with a 2-cell at-
tached via a map of degree 2 from dD? — S!. What is the result of lifting the
loop in RP(2) that wraps once around this 1-skeleton?

To understand this question, it helps to specify a pre-image of the 1-skele-
ton of RP(2) under the quotient map S? — RP(2). One way to express it is as
a closed semicircle at the equator; the equivalence relation identifies the two
endpoints to produce the 1-skeleton. While RP(2) cannot be drawn as an
imbedded surface in R, an open “collar” about the 1-skeleton can be ex-
pressed as a Mobius band M < RP(2), with the 1-skeleton along the midline.
Under the quotient map, M arises from a collar extending above and below
the semi-circle in S2; the identification of x with — x provides the twist on the
ends of the collar to produce M (Figure 4.4).

In the expression of RP(2) as a 2-cell attached to S', M arises as the image
of an open collar along the boundary of D?. The map of degree 2 wraps 0D?
twice around the 1-skeleton, producing the entire band M. From this repre-
sentation, it is clear that a loop traversing the 1-skeleton once lifts in S2 to a
path from %, to — X,. Note that if the loop is repeated to produce a loop that
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Figure 4.4

wraps twice around the 1-skeleton, then the lift becomes a loop with terminal
point back at X,. This was not the case in the first example; repeating the
loop in T? would lift to a path with endpoint (2,4), etc., and the lifts of succes-
sively composed loops in T? would never return to %, = (0,0).

EXERCISE 4. To prove the next proposition, it will be necessary to use the important
concept of the Lebesgue number. If Y is a metric space and U is an open covering of
Y, a Lebesgue number for U is a positive number u such that any subset of Y with
diameter less than g is contained in some open set in U. Prove that if Y is a compact
metric space and U is an open cover of Y, then U admits a Lebesgue number.

4.3 Proposition. If p; X — X is a covering space and F: 1 x I X is a
homotopy between paths f, and f,, then for any lift of f,(0) = F(0,0) to a point
in X, there is a unique lifting of the homotopy F to a homotopy G: I x I — X
between paths g, and g, which are lifts of f, and f,; that is, pG = F.

Proof. Using the continuity of F, there is about each (s, f) in I x I an open set
U whose image under F is contained in a fundamental open set in X. The set
of all such U forms an open cover of the compact set I x I. Let 4 be a
Lebesgue number for this covering, and select points 0 =t <t, <~ <t, =
1 so that each rectangle [t,,t;,,] x [t;,t;,,] has diameter less than 4.

Now consider [to,t,] x [ty,t,] Its image in X under F is contained in a
fundamental open set. Thus the lift of F(ty,t,) = F(0,0) to X uniquely
determines a lifting G on [ty,t,] X [t4,t,] into X. The rectangle [to,t,] %
[t,.t,] likewise is mapped by F into a fundamental open set. Along the edge
[to,t,] x {t,} alift G has already been defined. There exists a lift of F that
agrees with G along this edge, and by 1.2, it must be unique.

Continuing in this manner, G may be extended to [t,,t,] % I, then in the
same manner to [t,,t,] x I, always using the previous lifting along one or
more edges of the small rectangle. The end result is a unique map

G:IxI- X
such that G(0,0) agrees with the lift of F(0,0) and pG = F. a
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Note that if the homotopy F between the paths f, and f, keeps the initial
and terminal points of the paths fixed, then the same must be true of G in X.
In particular, for loops at x, there is the following corollary.

4.4 Corollary. Let p: X — X be a covering space with p(%,) = x, and f be a
loop in X at xy. If g is the lift of f with initial point %, the terminal point of g
in p~Y(x,) is an invariant of the homotopy class of the loop f, under homotopies
that keep the endpoints fixed. ]

This relationship between based homotopy classes of loops at x, and the
discrete set p~!(x,) in X is very important. Assuming X is pathwise con-
nected, for any point w in p~!(x,), there is a path g in X from %, to w. Then
pg is a loop at x, that clearly lifts to g. In other words, the correspondence

{based homotopy classes of loops at x} — p~*(xg),

sending the class of f into the terminal point of the lift of f with initial point
%,, has its image precisely the set of points in p~!(x,) lying in the path
component containing X.

A natural question to ask is whether this correspondence is one-to-one.
Suppose f and ' are loops at x, lifting to paths g and g’ leading from %, to
the same point W in p~'(x, ). Note that if there exists a homotopy G in X from
g to g’, fixing the endpoints of the paths, then pG is a based homotopy
between f and f’, hence f and f’ would lie in the same class. So the question
may be recast: Given two paths in X from %, to W, does there exist a
homotopy between them, fixing the endpoints? Spaces that have this prop-
erty for any pair of points are said to be simply connected. In our previous
examples the answer to this question is affirmative for

exp: R — S,

7. §" — RP(n), if n > 1, and

q R T2

However, the restriction of g to the lattice L does not have this property.
In L there are paths from X, = (0,0) to (1, 1) that are not homotopic. In other
words, there are distinct based homotopy classes of loops in S, v S, that lift
to produce the same terminal point in g~!(x,).

For a simpler example of this phenomenon, consider the covering space
given by the mapping

wq: S1 ——»Sl

where w,(z) = 29, for some positive integer q. Taking g = 3, consider the two
loops 2 and f in the base, where o traverses S' once in a counterclock wise
direction and f traverses S! four times in the same direction. Then « and f
lifted to the same initial point in the total space will produce the same
endpoints, but the original loops o« and f§ are not homotopic in the base.
This correspondence also helps in understanding a new algebraic struc-
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ture. In the covering space exp: R — S!, a loop f traversing S' once in a
counterclockwise direction lifts to produce the integer 1 as its terminal point,
if we choose X, to be 0 € R. Composing the loop f with itself k times in S*
forms a loop that produces the integer k € R. Similarly, reversing the direc-
tion along f gives a loop f’ that produces — 1 € R, and the composition of f
and f'is a loop that produces 0 = X as its terminal point.

For the covering space g: R* — T2, we previously described a loop fin T2
that lifts to a path in R? from %, = (0,0) to (1,2). Now let g be a loop at x,
wrapping once around T2 in the “horizontal” direction, but with the negative
orientation, and let h be a loop at x, wrapping twice around T? in the
“negative vertical” direction. The loop in T? produced by traversing f, then
g, then h lifts to a path in R? from (0,0) to (1,2) to (0,2) to (0,0). Since this
loop in R? is homotopic to the constant loop at (0,0), the composed loop in
T? must be homotopic to the constant loop at x,. Note that this conclusion
remains valid if the order of the composition of f, g, and h is changed.

A final example shows that this commutative relationship is not always the
case. The restriction of g to the lattice L may be described in the same
intuitive terms. Let f be a loop in S, v S, that wraps once around S, in the
positive direction and g be a loop that traverses S, once in the positive
direction (Figure 4.5).

The loop in S, v S, formed by traversing f first and then g lifts in L to a
path from (0,0) to (1,0) to (1, 1), while the path formed by traversing g first
and then f lifts to a path from (0,0) to (0, 1) to (1, 1). These two paths in L are
not homotopic; consequently, the two composed loops in S, v S, are not
homotopic.

To summarize these observations and examples, the based homotopy
classes of loops at x, in the base space X may be represented by the effect
each class has on p~'(x,). Composition of loops in X provides a product
whose effects may be observed, to some degree, on p~!(x,) in X. From the
last example it is clear that the product operation on homotopy classes of
loops need not be commutative.

We now make this structure more formal. Let X be a space and x, € X.
The fundamental group or Poincaré group m,(X,x,) is the set of based

0, .
. (L1 q

0.0y 1.0y

Figure 4.5
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homotopy classes of loops at x, in X, with product structure given by the
composition of loops. That is, if a: [0,1] —» X and §: [0,1] — X are loops at
Xo, then () and (B, the respective homotopy classes, are elements of
7,(X, xo). Their product {a)>-{f) is the class in 7,(X,x,) represented by
a-f:[0,1] — X where

a(2t) for 0<t<1/2

2P = {,3(2t —1) for 12<t<l

Note that «- f§ is indeed a loop at x,,.

To see that {(a)-{f> is well defined, we must show that the homotopy
class of - f does not vary with the choice of representatives in the classes ()
and {f). So suppose ' ~ a and ' ~ f are other representatives of (a)> and
{3, respectively. Then there exists a based homotopy

F:[0,1] x [0,1] - X

such that F(t,0) = a(t) and F(t,1) = «'(t). Likewise, there exists a based
homotopy
G: {011 x[0,1]1-X
with G(¢,0) = B(t) and G(t,1) = f'(¢). Then define
H:[0,1] x [0,1]-» X
_ JFQ2t,5) if0<t<1/2and
by H{t.5) = {G(2t 15 iflp<t<l.

The two definitions agree along the segment ¢t = 1/2, so H is continuous.
H(t,0)=a-f(t)yand H(t, 1) = o' f'(t). Clearly, H(0,s) = x, = H(l,s) for all s.
So «-f is homotopic to «’- ', and the product {a> (> = <a- > is well
defined.

To see that this product is associative, let a, f5, and y be loops based at x,
in X. We must show

(o>~ CB2Y <> = > (KB> <))

Restating this in terms of the representing loops, we must show that (x- ).y
is homotopic to «- (- y) as loops based at x,. Here

a(4t) if0 <t <1/4
@ B)yyy=<p@d—1) iflja<e<1/2
-1 ifl2<t<1
and
a(2t) f0<t<1/2
a(f))=4 B4 -2 ifl2<1<3/4
y(4t — 3) if3/d<t< 1.
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Formulating a based homotopy between these two loops becomes easier if
viewed geometrically (Figure 4.6).

a((4/(s + 1)) ifs >4t —1
H(s,t)=< pdt —s— 1) ifdt — 1 >s>4t—2
P42 —sHt—(s+2)/4) ifdt—2>s

Along the segments where the definitions change, the function H takes each
point into x,. Consequently, H is continuous and («- ff)-y is homotopic to
a(fy)

The identity element of the group 7, (X, x,) is the class of loops homotopic
to the constant loop e at x,, that is, e(t) = x, for 0 < t < 1. For any element
{ay in 7 (X, xo) there is an inverse (o) "', the class represented by &, where

a(t) = a(l — ).

Note that  is just the loop « traversed in the opposite direction. To see that
(&Y = (o>, we must establish based homotopies between «- & and e, and
between % -« and e (Figure 4.7).

s=1

[+ B Y

Figure 4.6

constant

Figure 4.7
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On [0,1] x [0, 1] define

o(2t) ifs<1-—2t
G(s,t) = < a((1 — s)/2) ifs>1-—2¢t and s>2t— 1
a2t —1) ifs<2t— 1.

Note that if a value of s is selected and the loop at level s produced by G is
traced, it will proceed along « to the point a((1 — s)/2), remain at that point
until t = (s + 1)/2, and then retrace that portion of a back to x,. When s = 0,
this yields «-%; when s =1, this yields e. The verification that x-« is
homotopic to e is similar.

If (Y,yo) is another space with designated basepoint, and /- X - Y is a
continuous function having f(x,) = y,, then we define

S (X, x0) = 7y (Y, yo)

by f.({2>) = {fa), i.e. the homotopy class represented by the loop at y, in
Y given by composing f with the loop a. If o’ is another representative of {a),
then a homotopy in X from « to ' may be composed with f to produce a
homotopy in Y from fx to fa’. Thus f ({a)) is a well defined element of

(Y, yo)

4.5 Proposition. If f: (X, xq)— (Y, Vo), is a map of pairs, then
Jo (X, x0) = 1 (Y, o)

is a homomorphism of groups.

Proof. The verifications above show that n,(X, x,) and n,(Y, y,) are in fact
groups. For elements {«) and {f) in n,(X, x,) represented by paths « and f3,
it is clear from the definitions that f,({a)>- {B)) = f,({a>) f ({B). ]

ExaMPLE. Let (%) be a class in 7,(S", x,), where x, is chosen to be the point
(1,0)in S*. Using the covering space exp: R — S!, we lift « to a path in R with
initial point 0. The terminal point of this lift is an integer which we denote
d(x). Since any loop homotopic to « must lift to a path with the same terminal
point, d(x) depends only on the class of « in 7,(S', x,). Consequently, d
defines a function from 7, (S*, x4) to Z. Note that if the initial point of the lift
of « is taken to be the integer k, then the terminal point of the lift will be
k + d(x). Consequently, if « and 8 are loops at x,, then d(x- ) = d(2) + d(f).
In other words, we have produced a homomorphism

d: (8% x0) > Z,

called the degree of the loop.

For any integer m in Z there is a path § from 0 to m in R. Projecting this
path down to the base, y = exp 7 is a loop at x, for which d(y) = m; hence d
is an epimorphism. On the other hand, let « and $ be loops in S' with
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d(a) = k = d(p). So the lifts & and § are paths in R with initial point 0 and
terminal point k. Define a function

H:[0,1] x [0,1] = R

by H{t,s) = (1 — s)a(t) + s[’?(t), 0 <s < 1. Since R is convex, this is well de-
fined and continuous. This homotopy from & (s = 0) to § (s = 1) fixes the
endpoints at 0 and k throughout the deformation. Then exp H is a based
homotopy from a to . Therefore {a> = {f>, and d is a monomorphism.
This completes the proof of the following proposition.

4.6 Proposition. The degree of a loop defines an isomorphism

d:m, (8 xo) > Z. O

For the next two calculations, we need an important property of maps
between finite CW complexes: If X is a k-dimensional finite CW complex, A
is a subcomplex, and f: (X, A) — (Y, B) is a map of finite CW pairs, then f is
relatively homotopic to a map taking X into the k-skeleton of Y. This is a
consequence of the Cellular Approximation Theorem (Theorem 2.25).

Now suppose () is an element of 7,(S",x,), n = 2. If w is a point in the
interior of an n-cell of S”, the preceding property may be applied to produce
a representative o' of (a> such that w does not lie on the loop . Removing
w from S” and projecting stereographically from that point identifies {S” — w}
with R". Since R" is convex, the loop in R” resulting from o' may be deformed
into the constant loop. Translating the homotopy back to {S" — w} estab-
lishes that o is homotopically trivial, and (o) = {e). So the fundamental
group of §" is trivial for n > 2.

Note that this same argument may be used to show that if & and B are
paths from y, to z, in 8", n > 2, then & is homotopic to B via a deformation
keeping the ends fixed at y, and z,. This observation may be applied to
calculate the fundamental group of real projective space.

Suppose {f) € n,(RP(n), x,), represented by the loop f. Using the
covering space

(8", ¥o) = (RP(n), xo)
we lift f to a path f in $” with initial point y,. The terminal point of /i will be
either y, or —y,, since 7 ' (xg) = {¥, — ¥o}. Define a function

o: 1, (RP(n),xy)—>Z, ={1,—1} by
1 if the terminal point of f is y
a({p>) = . . . .
—1 if the terminal point of f is — y,.

For clarity we are writing the group Z, multiplicatively. As before, the func-
tion ¢ is a homomorphism, and the existence of a path in $" from y, to —y,

shows ¢ is an epimorphism. :
Given two loops f§ and y in RP(n) that lift to paths 5 and 7 with the same
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terminal point, the observation above establishes a homotopy from f to Fin
S", and subsequently from f§ to y in RP(n). Therefore ¢ is also a mono-
morphism. We now summarize these observations.

4.7 Proposition. For n > 2,
nl(sn’yo) = 1’
and

7, (RP(n),xo) = Z,. O

EXERCISE 5. Use the covering space g: R? —» T2 to prove that

n (T3 x0)x Z x Z.

Some of the results expressed previously in terms of covering spaces may
now be reformulated in the framework of fundamental groups and induced
homomorphisms.

4.8 Proposition. If p: X — X is a covering space, then the induced homomor-
phism

Dy: 7T1(X»io)‘* T (X, xg)

is a monomorphism.

Proof. Suppose 7 is a loop at %, in X with p,({F>) trivial in 7 (X, x,). That
is, there exists a homotopy in X from p7 to the constant loop. By Proposition
1.3, this homotopy lifts to a homotopy in X between 7 and the constant loop
at X,. Thus {{ is trivial in nl()?, %,), and p, is a monomorphism. O

4.9 Theorem. If p: X — X is a covering space, Y is pathwise connected, and
f: Y — X is a continuous_function, then a necessary and sufficient condition
for the existence of alift {1 Y = X is that f (n,(Y,y0)) E p(m,(X, X,)).

Proof. The necessity of the condition is evident, since the existence of a lift f
means the following diagram is commutative.

(X, Xo)

/

T, (Y, yo) — T (X, x0).

Py

Since f, = p*f*, the image of f, is contained in the image of p,.

Now suppose that f_(m (Y, y,)) € p*(nl()?,io)), and let y be a point of Y.
Pick a path w in Y with w(0) = y, and w(1) = y. Then fw is a path in X from
Xo to f(y). Lift this path in X to a path & in X with initial point %,. Define
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f(y) = @(1). This is our candidate for a lifting of the map f. As it is defined, it
is clear that /' = pf(Figure 4.8).

We must show that the function f is well defined and continuous. First we
show that the definition of f(y) is not dependent on the choice of the path w.
Suppose that ' is another path from y, to y. Then (w')'w is a loop at y,.
The image under f, of this loop is a loop f at x,. Thus there is a loop B at %,
with p_( <,B>) = {f}, that is, p[} and f are homotopic.

Take a homotopy between these loops in X, and lift the homotopy to X
with initial point %,. Since the loop f is closed, the lift of # must also be
closed. Another way of expressing this is that, the lifts of f(w) and f{w’),
which begin at %,, must both end at the same point in X. This means that
@(1) = @&'(1), so the image of y under f is well defined.

To see that f is continuous, let y and o be as above, and take an open set
U about f(y)in X. Since p is a covering map, we may assume that p maps U
homeomorphically onto a connected open set p(U). Then f ~*(p(U)) is an
open set about y. Y is locally pathwise connected, so there is a pathwise
connected open set ¥ about y contained in f~!(p(U)). If z is any other point
of V, there is a path in V from y to z. Composing this path with w produces
a path from y, to z. Since the definition of f(z) does not depend on the choice
of path from y, to z, we may use this composition; hence it is clear that
f(2) € U. This proves that f is continuous, so we have established the exis-
tence of a lifting. O

This theorem is remarkable in that it describes an algebraic condition that
is sufficient for the existence of a lifting of f. Practically all of the applications
we have encountered have involved necessary algebraic conditions for the
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existence of certain topological features. This theorem is appealing in that it
not only describes a sufficient condition for the existence of a lift, but also
provides a concise description of the lift itself.

ExaMpLE. For any positive integer g, we earlier defined w, to be the standard
map of degree g on S*

W, st st

given in complex coordinates by taking z € S! into z% For this covering space
the image of wg.: 7,(S*, xo) = 7, (S', x,) is the subgroup ¢gZ. Consequently, if
q > 1, no map

w,: §' - §!

lifts through w, unless g divides r. In particular, taking r = 1, , is the iden-
tity and there is no “cross section” of the map w, for g > 1, i.e., there is no
map s: S' — S' such that w,s = the identity.

An obvious question that must be considered is how the choice of the
basepoint x, in X affects the fundamental group. Clearly, n,(X, x,) can carry
information only on the path component containing x,. So assume that X is
pathwise connected, and let x, be another point of X. Select a path o in X
with 2(0) = x, and «(1) = x, (Figure 4.9).

Given a loop ff based at x,, we produce a loop at x, by taking the compo-
sition a7 fa. Note that if f is modified to ' via a homotopy based at x, then
composing this homotopy with « and «™' as above shows that the loops
a~1p'a and o™ ! B are homotopic, based at x,. The correspondence f§ — a~!fa
therefore defines a function

he (X, x,) = (X, Xo).

4.10 Proposition.

(a) h, is an isomorphism of groups.

(b) If o is another path from x, to x, which is homotopic to « via a homotopy
fixing the endpoints, then h, = h,..

() If a7" is defined by o' (t) = a(1 — t), then (h,)™" = h,-1.

Figure 4.9
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Proof. We prove only that h, is one-to-one, leaving the remaining parts as an
exercise. Suppose fi is a loop at x; with & () homotopically trivial at x,. So
there exists a homotopy based at x, between « ™!z and e,, the constant path
at x,. To see that f is homotopic to e,, we modify § through several steps.

First note that as loops at x,, f is homotopic to (xa~*)f(aax™"). This com-
position may be reassociated as a(ax”* fo)a ! within the same homotopy class
at x,. Now apply the homotopy from (™' fa) to e, to show the composition
is homotopic to a(e,)x"!. Finally, note that a(eq)x™! as a loop at x, is
homotopic to e;.

In summary, if h,({f>) =1, then {f> = 1 in n (X, x,). O

EXERCISE 6. Prove the remaining parts of Proposition 4.10 (a), (b), and (c).

We look briefly at an example to see that if a path y from x, to x, is not
homotopic to a, then h, need not be the same isomorphism as h,. Consider
X =S, v §, with its covering space qg: L —» S, v S,. Let x4 be thc point of
intersection of the two circles, and let x,; be antipodal to x, on the horizontal
circle (Figure 4.10).

Let « be the horizontal path from x, to x, which lifts in L to the segment
from (0,0) to (1/2,0). Let y be the path from x, that traverses the vertical
circle once and then follows a from x, to x,, lifting in L to the segment from
0,0)to (0, 1) to (1/2, 1).

Now take f to be the loop at x, traversing S, once in the positive direction.
Note that h,(f) = «~!Ba, as a loop at x,, lifts in L to a path from (0,0) to
(1/2,0) to (3/2,0) to (1,0). On the other hand, h,(f) = y~' By, as a loop at x,,
lifts in L to the path from (0,0) to (0, 1) to (1/2,1) to (3/2, 1) to (1, 1) to (1, 0).

Although these paths in L have the same endpoints, they are not
homotopic. If h,(f) and h.(f) were homotopic as loops at x,, the homotopy
between them could be lifted to L. So for this example the isomorphisms A,
and h, are not the same.

Note that if we take x, = x, then h, becomes an inner automorphism of
7(X, xo), that is

1 [an q ‘
-
YT )

Figure 4.10



4. Covering Spaces 101

h(<BY) = ()™ (BY o).

Of course, if m,(X, xo) is abelian, then any such isomorphism is the identity.

Now suppose p: X — X is a covering space in which X is pathwise
connected. The lifting theorem (4.9) was concerned with the image of the
homomorphism

Py m(X, %o) - 7 (X, Xo).

Is this subject to change with the choice of %, in p~!(x,)? In general the
answer is yes, but the variation can be precisely characterized.

4.11 Proposition. If p: X — X is a covering space with X pathwise connected,
then as y ranges over the points of P~ H(xo), P4 (n (X, y)) ranges over all conju-
gates of p(m (X, %) inm (X, x,).

Proof. Let y € p~'(x,) and select a path & in X from X, to y. Then « = pd is a
loop at x4, and

Pu(m(X, ) = polhs(m, (X, %o))
= hy(p,(m1(R. %))
shows that p*(nl()?, y)) is a conjugate of p*(nl()?, Xo))

On the other hand, let {¢) en,(X,x,) and consider the conjugate
(P> 1 (Pl (X, o)) <{@). Lift the loop n = ¢! to a path 7 in X with initial
point %,. Taking y = (1), we see that

P (X, ) = pylby(n, (X, o))
= hy(p(m, (X, %))
= (P, (X, %)) ()™
= {$ 7 py(my (X, %0)) (9.
So each conjugate of p*(nl()?, X)) in m (X, xo) is an image for some choice
of y. O

This result allows us to state the lifting theorem (Proposition 4.9) in a more
general form:

4.12 Corollary. If p: X — X is a covering space, Y is pathwise connected, and
f: Y — X is a continuous function, then a necessary and sufficient condition for
the existence of a Itft f:Y—>X is that fe(m (Y, y5)) be contained in some
conjugate of p,(n AX, %)), O

Note that two choices for y in p~'(x,) may yield the same conjugate in
n,(X, xo) In fact, all y will yield the same conjugate in the case that
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p, (1 (X, %,)) is normal in 7, (X, x,). In particular, this is the case if 7, (X, x,)
is abelian.

From our examples we have seen a family of connected covering spaces
with base space S!:

(a) For each positive integer m, the m-fold covering
Wp: St - S; and

(b) The exponential map
exp: R — St

It is natural to ask how these are related, or, more specifically, when does
there exist a mapping of covering spaces that preserves the covering relation-
ship? The answer will rely on the lifting theorem, but first we consider the
more general setting.

Suppose ¢: W — X and p: X - X are covering spaces over the same base
space X. A homomorphtsm of covering spaces (or a map of covering spaces) is
a continuous function f: W — X, such that pf (W) = gq(w) for every w in W. In
other words, the following triangle is commutative

The homomorphism [ is an isomorphism if there exists a homomorphism
h: X — W with fh and hf the respective identity maps.

It will supplement our understanding of covering spaces if we can establish
how such mappings arise and how they are related to the subgroups of the
fundamental group of the base, X. For this analysis we will consider only
covering spaces in which X is pathwise connected,

4.13 Lemma. If ¢: W — X~and p: X — X are covering spaces over a pathwise
connected base X, and f: W — X is a mapping of covering spaces in which f
maps W onto X, then f itself is a covering space.

Proof. Given % in X, we must produce a fundamental open set for f about X.
Since both g and p are covering maps, there exist about p(x) fundamental
open sets V, for g and V, for p. Let U be the component of V, n ¥, contaning
p(X), and consider p~!(U). Each component of p~!(U) is mapped homeomor-
phically onto U via p. let U be the component of p~'(U) containing .

Now f 7 (p™"(U)) = ¢ *(U), and each component of this set is mapped
homeomorphically onto U via q. Since f is onto, at least one of these compo-
nents must contain a point of f ~!(%). By composing homeomorphisms we see
that each component of f ~}(U), i.e., those components of g ' (U) that contain
a point of f (%), is mapped homeomorphically onto U. Thus f is a covering
map. O
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4.14 Lemma. If ¢: W — X and p: X — X are covering spaces over a pathwise
connected base X in which both W and X are pathwise connected, then any
mapping of covering spaces f: W — X is itself a covering space.

Proof. By the previous lemma it suffices to show that f is onto. Given X in X,
select a point W in ¢~ !(p(%)) (Figure 4.11). Since X is pathwise connected,
there is a path ¢ in X from f(W) to %. Projecting this path down into X gives
a path based at ¢(W) = p(X). There is a unique lift of this path to W with
initial point w. Call this path {. Now f{ and ¢ are paths in X with initial point
f(W), projecting via p into the same path in X, By the uniqueness of lifts, f{
and ¢ must be the same path. Thus % = ¢(1) = f({(1)) is in the image of f, and
f is onto.

We conclude that f: W — X is a covering space. O

Note that these two results place significant limitations on the continuous
maps from W to X that can be homomorphisms of covering spaces. The
following propositions provide further restrictions, as well as specific con-
ditions for the existence of a homomorphism.

4.15 Proposition. If ¢: W — X and p: X — X are covering spaces with W and
X pathwise connected, and f,g: W — X are homomorphlsms of covering spaces
for which g(W) = f(W) for some point w in W, then f = g.

Proof. Since f and g are both “liftings” of g to X, and since W is pathwise
connected, we may apply Proposition 4.2. In other words, if f and g agree at
a point, they are identical on W. O

In the special case that W = X, an isomorphism of the covering space is
called an automorphism. The following observation is an immediate conse-
quence of Proposition 4.15:
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4.16 Corollary. If f: X — X is an automorphism of a pathwise connected
covering space p: X — X, and f is not the identity, then f is fixed-point free.
O

4.17 Proposition. Let q: W —» X and p: X — X be covering spaces with W
pathwise connected. If q*(nl(W Wo)) is contained in a conjugate of
p.(m (X %)), then there exists a homomorphism f: W — X.

Proof. This follows directly from the Lifting Theorem (4.9). Note that we may
not be able to require that the homomorphism take w, into %,. O

A covering space p: X — X is regular if, for each closed path « in X, either
all lifts of « to X are closed or no lift of « is closed.

EXERCISE 7. (a) Let p: X — X be a covering space with X pathwise connected. Then
prove that (X, p) is regular if and only if for any points X, and %, in p~*(x,) there is an
automorphism of (X, p) taking %, into %,.

(b) Show that the covering space p: X — X, with X pathwise connected, is regular
if and only if p,(n,(X,%,)) = p,(n,(X,%,)) for every X, and X, in p~*(x,).

(c) Find an example of a covering space, with X pathwise connected, which is not
regular.

4.18 Proposition. Let g: W —> X and p: X » X be covering spaces with 11%
pathwise connected. There is a homomorphism [: W — X with f(W,) = X, if
and only if q,.(n,(W,W,)) is contained in p,(n,(X, X,)). O

We can summarize these results in the following theorem:

4.19 Proposition. Two pathwise connected covering spaces q: W — X and p:
X — X are isomorphic if and only if for any two points W, and %, lying above
Xg» (7 (W, Wo)) and p(n,(X, X,)) are conjugate in n, (X, x,).

Proof. If the image subgroups are conjugate in 7,(X, x,), then using Proposi-
tion 4.11, we can change the basepoint in W to w, so that the images of d,
and p, are equal. Applymg Proposition 4.18, there exist homomorphisms
f: W X and h: X —» W with f(w,) = %, and h(%,) = w,. Now by Corollary
4.16 each composition must be the respective identity, since hf(w,) = w, and
fh(Zo) = . o

Conversely, an isomorphism f: W — X implies the images of p, and g, are
equal for one choice of basepoints. By Proposition 4.11, varying the base-
points within g 7*(x,) and p~'(x,) will produce conjugate subgroups as images.

a

At this point we have established that isomorphism classes of pathwise
connected covering spaces of (X, x,) give rise to conjugacy classes of sub-
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groups of 7,(X,x,). Furthermore, homomorphisms of pathwise connected
covering spaces (which are themselves covering spaces) correspond to “inclu-
sion” of conjugacy classes, i.e., one conjugacy class is “included” in another if
each subgroup in the first is contained in some subgoup in the second.

There is one remaining piece of the puzzle that is more difficult to resolve:
Given a conjugacy class of subgroups of m,(X, x,), does there exist a covering
space p: X - X with Py(m (X, %,))in this class? We will outline the answer to
this question; for more details see Massey [1967].

The simplest nontrivial case is associated with the conjugacy class of the
subgroup {1}. That is, since s, is a monomorphism, we seek a pathwise
connected covering space s: E —» X with n,(E,&,) = {1}. Such a covering
space is called a universal covering space because it exhibits the following
universal mapping property: For any covering space p: X — X, there exists a
homomorphism f: (E,s) — (X, p). This holds for (E,s) since s*(nl(E, &y)) =
{1} is a subgroup of every image.

Now suppose 7, (E, &) = {1}, and let U be a fundamental open set about
x, and ¥ a component of s™'(U) mapped homeomorphically onto U by s.
The diagram

n,(V,é) —— n,(E, &)

(ﬂvhl = S*J

(U, xq) — (X, x0)

is commutative, where i and j are inclusion maps. Now (s|,), is an
isomorphism, and n (E é,) = {1}, so any nontrivial element of 7, (U,x,)
must be in the kernel of j, . In other words, any nontrivial loop in U, based at
Xo, must be homotopically trivial in X. A space with this property at each
point is said to be semilocally simply connected. Put more directly, a space Y
is semilocally simply connected if for each y in Y there exists an open set V
about y such that any loop in ¥V, based at y, is homotopic in Y to the constant
loop at y.

EXERCISE 8. Find an example of a space Y that is not semilocally simply connected.

The preceding discussion shows that if X fails to be semilocally simply
connected, then X will not have a simply connected covering space. How-
ever, there are examples of universal covering spaces, i.e., covering spaces
with the universal mapping property, in which the total space is not simply
connected. See Spanier [ 1966] for a specific example.

For our purposes we will assume the space X is semilocally simply con-
nected; this is the case for all manifolds and finite CW complexes. So given a
pathwise connected base (X, x, ), consider the set of all paths in X with initial
point x,. For any point x, in X, the paths from x, to x, fall into distinct
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homotopy classes (with endpoints fixed). The homotopy classes of paths be-
come the points of the space E. Take &, to be the class of the constant loop
at x,. The function s: E — X assigns to a homotopy class the endpoint x,
in X.

Our assumptions regarding the local properties of X allow a topology to
be introduced in E so that s is continuous and is, in fact, a covering space. To
see why E will be simply connected, take a nontrivial loop at x, in X. This
represents a homotopy class, hence a point in E lying above x,, but not equal
to &,. Thus any nontrivial loop at x,, lifts to a nonclosed path in E. Since Sy
is a monomorphism, there can be no nontrivial loops at &, in E. Therefore
E is simply connected.

Now suppose s: E — X has n,(E,&,) = {1} and let G be a subgroup of
nl(X xg). Eachelement gin G produces via lifting the path to &, a point ge,
in s71(x,), and consequently an automorphism of E. This action of G on E is
particularly nice, due to Corollary 4.16 and the properties of E. The quotient
space E/G admits a map

rE/G—-X

that is a covering space, and r,, (7, (E/G, {,})) is equal to the subgroup G. For
example, start with a loop « in G. Lift « to a path in E from &, to é,. These
two points are identified in the quotient E/G, and the resulting loop is
mapped via r, to a.

We summarize these observations in the following theorem. Again, for a
complete proof, see Massey [1967].

4.20 Theorem. For a semilocally simply connected space (X, x,) the isomor-
phism classes of pathwise connected covering spaces of (X,x,) are in one-to-
one correspondence with the conjugacy classes of subgroups of m,(X,x,). O

ExaMPLE. We return to the connected covering spaces of S. Writing
7,(SY, xo) & Z multiplicatively with generator 0, for each positive integer n
there is a subgroup nZ = {0™|k € Z}. Together with {1}, this is the complete
set of subgroups of 7,(S?, x,), and each is its own conjugacy class. For m > 0,
w,,: S! — S*, the m-fold covering, has

image(w,:) = mZ < n,(S*, xo).

Of course, exp, has image {1}. Consequently, as m ranges over all positive
integers, we produce all isomorphism classes of connected covering spaces of
S'. Furthermore, there is a homomorphism of covering spaces

[(SY wp) > (Sh )
if and only if k divides m.
EXERCISE 9. If p: X — X is a covering space with X pathwise connected, define the

multiplicity of p (or the number of sheets of p) to be the cardinality of {p71(x,)}. Prove
that the multiplicity of p is the index of p, (7,(X, %,)) in (X, x,).
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There is a clear relationship between the fundamental group and the first
singular homology group for a pathwise connected space. As we have seen,
both assign a group to a space and a homomorphism of groups to a continu-
ous map of spaces. Furthermore, homotopic maps are seen to induce the
same homomorphism. For certain familiar spaces, e.g., spheres, projective
spaces, and the torus, the fundamental groups are isomorphic to the homology
groups, so one might begin to believe there is little new information con-
tained in the fundamental group. The first major distinction lies in the obser-
vation that fundamental groups need not be abelian. Indeed, a space as
simple as the join of two circles readily produced a product of loops that do
not commute.

A less obvious distinction lies in the absence of a process in the fundamen-
tal group that is analogous to the subdivision procedure in singular
homology. While a loop in a space bears a striking resemblance to a singular
1-simplex, it cannot be subdivided into smaller loops the way a simplex may
be decomposed into smaller simplices. This difference means we can expect
no Mayer- Vietoris sequence as an aid to making computations. However,
there is an analogous theorem for the fundamental group that will be
discussed later in this chapter.

For now let us focus attention on the specific connections betwen 7, (X, x,)
and H,(X). Given a loop a at x, in X, we think of « as a map of pairs
a: (I, ¢y — (X, xo), where I = [0, 1]. Then « induces a homomorphism on the
first relative homology groups

2, Hy (1, 01) = Hy(X, xo)-

If ¢ denotes a chosen generator for H, (I, ¢I), corresponding to an orientation
for the interval I, then the element a,_ (o) in H,(X, x,) suggests a function from
loops at x, into H,(X, x,). Note that if «’ is a loop at x,, based homotopic to
%, then a, = %, and x,(0) = «,(0).

Thus we have a function

h: 7.(l(Xv’xo)—') HI(X’ xO)

called the Hurewicz homomorphism. To see that h actually carries the product
in 7, into the sum in H,, we return to the level of singular cycles and chains.
Note that h(<{x)>) may be represented by the singular l-simplex a: [ - X, a
relative 1-cycle in the pair (X, x,). Similarly, for {# in 7,(X, x,) we think of
f as a relative 1-cycle. The product (x> {f) is assigned by h to the homology
class represented by the relative 1-cycle dictated by a on the first half of the
interval and by f on the second half. To establish that this cycle is homolo-
gous to the sum of the cycles representing hA(<{a>) and h({f)), consider the
relative singular 2-simplex depicted in Figure 4.12.

Along the edge from v, to v, the value is (o) (). The segment, A, from the
midpoint of this edge to the vertex v, is mapped into x,. The edge from v, to
v, is mapped via «, suitably parameterized, as is each ray emanating from v,
to a point on 4. Similarly, the edge from v, to v, i1s mapped via f, as is each
ray starting at a point of 4 and ending at v,. The resulting singular 2-simplex
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Figure 4.12

has as its boundary a relative 1-cycle representing h({a) {f>) — h({a)>) —
R({B). Thus
h: (X, x0) = H(X, xq)

is a homomorphism of groups.

4.21 Proposition. The Hurewicz homomorphism
h:m (X, x) > H (X, xg)

is an epimorphism with kernel the commutator subgroup of (X, x,).

Proof. To see that h is an epimorphism, suppose t is a relative 1-cycle in
(X, xg). Then t is a finite sum of singular 1-simplices

T= Zmi¢i

where 0t = 0. Note that, for each i, d¢, is the difference of two O-simplices, i.e.,
the algebraic difference of two points in X. The fact that t = 0 in the relative
chain group means the algebraic sum of all points outside of {x,} is zero.

Consider the set of all O-simplices arising from the relative 1-chain t. We
think of each cf these as a point in X. For each O-simplex y, in this finite set,
choose a path w; from x, to y;. This can be done since X is pathwise con-
nected. If y; happens to be x,, we choose the path to be constant. Call this the
collection of “vertex paths” from x, to the 1-chain 7 (Figure 4.13).

Now suppose ¢, is a 1-simplex in 7, with d¢, = y, — y,,. The composition
w,'P;w,, is a loop at x, that traverses ¢; in the positive direction. Let § in
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C:

Figure 4.14

7, (X, xo) be the product of all such loops arising from 1-simplices in t, taken
with multiplicity dictated by the coefficients in the associated sum. Let us
intuitively examine h({f>). Since dr = 0, each O-simplex outside x, sums
algebraically to 0. Consequently, the path w; occurs in § the same number of
times as w; . Therefore, when viewed as singular 1-simplices, all the vertex
paths in A(<{f)) sum to 0, and the remaining paths produce 1. Hence
h({B>) = 1, and h is an epimorphism.

To analyze the kernel of h, suppose « is a loop at x, with k({a>) = 0. In
other words, when considered as a relative cycle, o is a boundary. So there
exists a relative 2-chain 8 = ) m;e; in X with 0 = a. As before, we select a
finite family of “vertex paths” from x, to the O-simplices of §. Denote the
O-simplices of 0 by {t,} and the corresponding vertex paths by {{,} (Figure
4.14). Suppose Jo, = {to,t1 ) + <t1,t,> + {t,,ty) =05 + 0, + 6,. Then
consider the composition

h = (CEIGZQZ)(CEIQQ)(CIlO'OCo)-

Note that since this loop arises as the boundary of a 2-simplex, it is
homotopically trivial. The orientation of dg, dictates a direction along each
edge, and hence a direction along each bracketed loop in the composition 4.
Reversing the orientation of an edge replaces the loop in the composition
with its inverse.

Now since 00 = , one of the loops described above must be « itself, with
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the vertex paths constant at x,. We want to consider the product of all such
loops produced in 86, and for clarity we assume that the first loop in the
product i1s «. Write the product of the loops from 6 in the form

Nif2N3 np%

and note that the composition is trivial in 7, (X, xg). So

ot =m,m500 1,

The algebraic sum of the 1-simplices other than o must be 0 since ¢ = a.
Hence each singular 1-simplex that occurs is expressed in equal numbers
with each orientation. This means that #,1,55 "7, is a product of loops in
which a loop and its inverse appear an equal number of times. Consequently,
M1M2M3 1, must lie in the commutator subgroup, and so must a.
Therefore the kernel of h is contained in the commutator subgroup. Con-
versely, since H,(X, x,) is abelian, the commutator subgroup of n,(X, x,) is
contained in the kernel of A. O

As a final topic in this chapter, we consider the problem of computing the
fundamental group of the union of two spaces in terms of the fundamental
groups of each space individually and of their intersection. It has already
been observed that the lack of a process analogous to simplicial subdivision
makes this problem more difficult than the same question for homology
groups. However, the approach we use does involve decomposing a loop into
segments contained in one subspace or the other.

Solet X = X, u X, be the union of two open sets with X, X, and X, =
X, n X, all nonempty and pathwise connected, with x, € X, n X,. The in-
clusion maps of subspaces give rise to the following commutative diagram

i*
nl(XO’xO) 7T1(X1,x0)
Jr*

ir*

4.22)

1,(X 3 %0) —— 1, (X,Xo)-

The first step is to show that n,(X,x,) satisfies a “universal mapping”
property with respect to diagrams of this type.

4.23 Proposition. If G is a group and k and k, are homomorphisms so that the
following diagram is commutative

(X0, Xo) e (X1, Xo)

(4.24) ian
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Figure 4.15

then there exists a unigue homomorphism
wn(X,xy) =G
such that pj,. = k, and pj,. = k,.

Proof. Let 2 be a loop in X at x,. Since X, and X, are open, we can find a
finite set of points x5 = yg, ¥1» ---» Ym = Xo along a with the property that
each y, lies in X, and the segment 1, from y; to y;,, lies in either X, or X,.
For each point y; select a path §;in Xy = X;, n X, from x, to y; (Figure 4.15).

Note that for each integer i, 0 < i < m, there is a loop at x, given by
traversing 8;_, from x, to y;_,, 7, from y;_, to y;, and then g; ' from y, back
to x,. Call this loop 6, = B;*t;8,_,. It is clear that 6, lies entirely within either
X, or X,, hence 0; represents an element of the respective fundamental
group.

Define a function

w (X, xg) > G

by u(@) = k,(0,) k(8,) " k,(0,), where it is understood that k, means either
k, or k, depending on whether 6, lies within X, or X,. Note that there is
some potential ambiguity if 8; lies in both X, and X,, but this means 0,
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Figure 4.16

arises from X, and the commutativity of (4.24) implies that, in this case, both
choices yield the same result.

Although our intuition strongly supports this definition of u, there are
several questions that must be resolved:

(1) Is this definition of 4 independent of the choices of the points y; and the
paths §,?
(2) If « and o are homotopic loops, is u(x) = u(a')?
(3) Is u a homomorphism? Does yj,» = k, and pj,» = k,?
(4) Is u unique with regard to these properties?
First consider a single point y; along «, and suppose another path y, is
chosen in X, from x, to y; (Figure 4.16). Note that

k(BT 1iBioy) = k(B vyl tiBicy) = k(B9 kW 7 tiBisy):
On the other hand
k*(ﬁi_+11Ti+1ﬁi) = k*(ﬁi_+11fi+13’i?i_1ﬁi) = k*(ﬁi_+11fi+1yi)'k*(}’i_lﬁi)
= k*(ﬁi_+11fi+1yi)' [k*(ﬁi_l}’i)]_l-

Since 7'y, is a loop in X, and since the diagram (4.24) commutes, the
value of k,, on this loop will be the same, whether k, is k; or k,. Thus

k*(ﬁi_+11‘fi+1ﬁi)'k*(ﬁi_lfz‘ﬁiﬂ) = k*(ﬁi_+11fi+1}’i)'k*(Vi_ITiﬁi—1)~

So the product will not change when ; is used in place of f;. Repeating this
argument at each y; shows that the product defining u(«) is independent of
the choice of the paths §;.

To see that u is independent of the choice of the points y;, consider once
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Figure 4.17

again the loop f;'t;8;_,. Suppose another point z € X, is added along 1,
separating 1; into ¢; and ¢;_;, and ¢ is a path in X, from x, to z (Figure 4.17).

Note that if 87 1,8, lies in X;, then ;' ¢;¢ and ¢ '¢,_, f;_, are both
contained in X, and

k*(ﬁi_l(pi¢)'k*(¢_1(pi—1ﬁi—1) = k*(ﬁi_l(pi¢¢_1(pi—1ﬁi—1) = k*(ﬁi_lriﬁl—l)~

Thus adding an additional point to the set of {y,} does not change the
value of u(«). More generally, adding a finite number of points to the set, i.e.,
refining the {y;}, leads to the same result. Now given two distinct sets of
choices for the points {y;}, we can consider the mesh of the two sets,
producing a refinement of both. The corresponding definitions of u(«) must
agree since they are both equal to the value computed using the refinement.
Therefore the definition of p(x) is independent of the choice of the points {y,}.

Suppose %' is a loop at x, homotopic to «.

If F: [0,1] x [0,1] = X is a homotopy between « and o', we can subdivide
the unit square so that each small rectangle is mapped by F into either X, or
X, (Figure 4.18). Proceeding one small rectangle at a time, we deform « into
o' through a finite sequence of paths such that each step involves a homotopy
in which the only change occurs within either X, or X,. For such a restricted
deformation, the points { y;} may be chosen so that the value of  is unchanged.
Hence p(o) = u(2’), and u is well defined on 7, (X, x,).

It is clear that uj,. = k, and uj,. = k,. The verification that u is a homo-
morphism of groups and that y is unique with regard to these properties is
left as an exercise. g
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Figure 4.18

This result should be put in more conventional terms. Given a category C
and a diagram

cC —— 4
4.25) fl

B

of objects and morphisms, a solution is an object D and morphisms r and s
making the following diagram commute

C — 5 4
jl rl
B — D

A pushout of (4.25) is a solution with the universal mapping property de-
scribed in Proposition 4.23. In other words, it is a solution that admits a
unique, compatible morphism to any other solution.

ExaMpLES. (1) In the category of topological spaces and continuous functions,
a space X written as the union of two open subsets X, and X, will produce
a diagram of inclusion maps

X,nX, —— X,

j

X,

whose pushout is X, U X,.
(2) Similarly, if Y is a space and f: "' — Y is a map, the pushout of the
diagram
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Sn—l Dn

is the space Y u, D" = Y.
(3} In the category of groups and homomorphisms, for any groups A and
B there is a diagram

{1} —— 4

|

B

The pushout of this diagram is called the free product of A and B, written
A * B. One must establish the existence of such a group and of the homo-
morphisms A - A+ Band B — A « B. An element of A * B can be thought of
asaword(g,,4,,...,9, in A and B, a finite sequence of elements, alternating
from one group or the other, with no g, equal to the identity. The product is
defined by juxtaposition followed by coalescence, when appropriate. The
identity element in 4 * B is the empty word. With this characterization the
homomorphism r assigns an element a € A to the word (a), likewise for the
homomorphism s.
More generally, if

C — 4

B

is a diagram of groups and homomorphisms, there exists a pushout G which
is the amalgamated free product (A = B)/H, where H is the normal subgroup
of A = B generated by the elements (i(c), [ j(c)]™*), where ¢ € C. For details see
Gray [1973], Massey [1967], or Spanier [1966]. Note that this characteriza-
tion of A * B and its amalgamation tracks closely the argument used in prov-
ing Proposition 4.23.

These observations, together with Proposition 4.23, provide a basic tool
for computing fundamental groups.

4.26 Van Kampen Theorem. [f X = X, u X, is written as the union of two
pathwise connected open sets with X | n X , pathwise connected, then

X4, X,,
nl(X,xo)znl( 1x0);;7z1( 2> Xo)
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where H is the normal subgroup generated by the words (i,.(2), [i,.(2)]7") for
ainm (X, N X;,Xg)

Proof. Within a given category, once a pushout is shown to exist, it will be
unique up to isomorphism. This is a direct result of the existence and
uniqueness of a compatible morphism from a pushout to any solution.

The conclusion of Proposition 4.23 may be restated in this setting: A
pushout of the diagram

1(X, 0 X3, %0) —— 1,(X 1, %)

ik

(X ,,%0)

is 7, (X, x¢). Applying the observations in the preceding discussion, this must
be isomorphic to the amalgamated free product of n,(X,, x,) and 7, (X 5, x¢).
O

4.27 Corollary. If X = X, v X, is the union of pathwise connected open sets
and X, 0 X, is both pathwise connected and simply connected, then

(X, xo) = (X, x0) * w1 (X3, X0) O

ExaMpLES. (1) Let X = S, v S, be the join of two circles with common point
xg, and let X, and X, be S, and §,, each expanded to include a connected
open set about x, in the other circle (Figure 4.19). Then X, n X, is con-
tractible, and (4.27) may be applied to conclude

(X, xo) = 1, (S,, x0) * 7, (S, Xo)
xZxZ,

the free group on two letters. Denote these generating elements by a and b.

(2) Write the torus T? as X, U X, where X, is an open disk on T2 and X,
is the complement of a smaller closed disk D < X, (Figure 4.20). Then
(X1, x0) & {1}, and X| n X, has the homotopy type of a circle. Suppose «
is a loop in X, n X, generating its fundamental group.

Figure 4.19
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Figure 4.20

Figure 4.21

The space X, may be retracted onto S, v S, (Figure 4.21). Note that the
deformation of X, onto S, v §, carries the generating loop « onto the prod-
uct aba™'b™" in m,(X ;,x,). Thus in the isomorphism

X4, X,,
(X, Xo) X (X, xo);;M( 25 X0)

the resulting group is

7T1(X27x0) ~ ZxZ
H ~ H

where H is the normal subgroup generated by aba~'b~*. Note that
(aba™'b™")ba = ab,

in fact H is precisely the commutator subgroup of Z « Z. Consequently,
(X, %) x ZDZ

as we determined previously.
(3) Write RP(2) as S* u, D?, where f: S' > S is a map of degree 2. Let X,
be the interior of D?, and let X, be the complement in RP(2) of the center of
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D? (Figure 4.22). Then X, is contractible, and X, retracts onto S'; a
generating loop fin X, n X, is wrapped twice around S' during this retrac-
tion. Hence n,(RP(2),x,) = ({1} * Z)/H where H is generated by the square
of the generator of the fundamental group of S*. Therefore =, (RP(2), x,) is
cyclic of order 2.

EXEeRCISE 10. Determine the fundamental group of the Klein Bottle.
ExErcise 11. Describe the universal covering space of the Klein Bottle.

Exercise 12. For any positive integer k, find a topological space whose fundamental
group is cyclic of order k.

Exercist 13. Determine the fundamental group of CP(n) for each n > 1.

ExERCISE 14. If n > 1, prove that any continuous function g: $” — S! is homotopically
trivial.

EXERCISE 15. Suppose X is a finite CW complex with no cells of dimension 1. What
can you say about the fundamental group of X?

Exercise 16. If X is a finite CW complex of dimension k > 2, with one O-cell, one
1-cell, and no 2-cells, show that m, (X, x,) is infinite cyclic.

EXERCISE 17. A knot is a simple closed curve imbedded in R*. Two knots K, and K,
are said to be equivalent if there exists an orientation-preserving homeomorphism

§' = oD?

Figure 4.22

Figure 4.23
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h: (R — K} - {R? = K,}. A knot equivalent to an ordinary Euclidean circle in a
plane in R? is said to be unknotted. The group of the knot K is the fundamental group
of R? — K. Clearly, two equivalent knots have isomorphic groups.

(a) Considering S as the one point compactification of R?, show that for any knot K,
the inclusion {R*® — K} = {S* — K} induces an isomorphism of fundamental

groups.
(b) Consider S as the unit vectors in C2 = R*, and take K to be the unit circle in the
complex plane determined by the first coordinate

K ={(z1,2;) € $f|zy| = 1}.

This is, by definition, unknotted. Show that the group of this knot is infinite cyclic.
This unknotted circle K is the core of a solid torus

T = {(z1,22) € ||z, )* = 5}
There is an analogous circle
L={(z;,2,) € S*||z| = 1}
at the core of the solid torus
T, ={(z1,2:) € 3|iz;* = §}.
These solid tori intersect in a torus
T=TinT,={(z1,2;) € $||z;,]* = Jand |z,|* = }}.

It may help to picture T as a standard torus in R3, with core K the unit circle in the
(x, y)-plane. In this representation, L would lie along the z-axis (Figure 4.23). Now let
N be a knot lying on the torus T that traverses m times in the horizontal (K) direction
and n times in the vertical (L) direction. This is a torus knot of type (m, n).

(c) Use Van Kampen’s Theorem to show that the group of this knot is isomorphic to
(Z*Z)/H, where H is the normal subgroup generated by (@™, b"), a and b the
generators arising from K and L.



CHAPTER 5

Products

In this chapter we introduce the theory of products in homology and
cohomology. Following the Kiinneth formula for free chain complexes, we
state and prove the acyclic model theorem. This is applied to establish the
Eilenberg—Zilber theorem and the resulting external products in homology
and cohomology. When the coefficient group is a ring R, it is shown that the
cohomology external product may be refined to the cup product, giving the
cohomology group the structure of an R-algebra. This structure is computed
for the torus by introducing the Alexander-Whitney diagonal approxima-
tion. Also, a cup product definition of the Hopf invariant is given. Finally, the
cap product between homology and cohomology is defined in anticipation of
Chapter 6.

Suppose that C = {C,, 8} and D = {D,,d} are chain complex. In Chapter 3
we discussed the formation of a new chain complex by tensoring a given
chain complex with an abelian group. We now want to generalize this to give
a procedure for tensoring two chain complexes to form a new chain complex.

Define a chain complex C ® D by setting

(C®D),=> C®D,,.
k
The boundary operator on a direct summand
0., ®D,-C,_,®D,®C,®D,_,
is given by the formula

He®d)=0c®d+(—1)°c® odd.

To check that this gives a chain complex, note that

120
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0 c®d))=0(0c®@d + (—1)Pc® od)
=00c®d+ (—1)"'0c®dd + (—1)dc ® od
+ (= 1)*P(c ® d0d)
=0.
Since the elements (¢ ® d) generate C ® D, it follows that d o § = 0.

Note that if /: C - C’" and ¢g: D — D’ are chain maps between chain com-
plexes, there is an associated chain map

f®g: CRID->C @D

characterized by f ® g(c ® d) = f(c) ® g(d).
Now suppose that C is a free chain complex. The exact sequence
0 Z,(C) 5 C,-5 B,.1(C) >0,
where o is the inclusion, must split because B,_,(C) is free. Thus, there exists
a homomorphism
¢:C,— Z,(C)
which is just projection onto a direct summand, that is, ¢ ¢ « = identity on
Z,(C).

We consider the graded groups Z,(C), B,(C), and H_(C) to be chain com-
plexes in which the boundary operators are all identically zero. Denote by @
the composition ® = 7 o ¢,

.5 Z,(0) 5 H(C),

where 7 is the quotient map. Then @ is a chain map between chain complexes
because

®(dc) = n(dc) = 0 = 0D(c).
5.1 Theorem. If C and D are free chain complexes, the chain map
P®id:C®D->H(C)®D

induces an isomorphism

(P®d),: H(C®D)—> H,(H,(C)® D).

Proof. Recall the exact sequence of chain complexes and chain maps
0—Z,(C)5CS5B,(C) -0,

where ¢ has degree —1. Since the sequence splits, we may tensor with the
chain complex D and preserve exactness. This yields an exact sequence of
chain complexes and chain maps

a®id

0-Z,0®D2%CceD- 2% B,(C)® D0
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and thus an exact homology sequence
= H,(Z,(C)® D) ~2=5 H,(C® D)~
S H, ,(Z,(0®D)~

where (¢ ® id), has degree — 1 and A is the connecting homomorphism,
On the other hand, the short exact sequence

0- B (C)5 Z,(C) 5 H,(C) -0
of chain complexes need not split. However, since D is free, exactness will be
preserved in
0-B(CO)®DLL7,C)®D 2L H(C)® D - 0.

Passing to the homology groups of these complexes we have the long exact
sequence

((®1d)*

Hn—l(B*(C) ® D)

-+ > H,(B,(C) ® D) =" H,(Z,(C) ® D) —>"% H,(H,(C) ® D)
% H, ,(B,(O)® D)~
These two long exact sequences
H,(B,(C)® D) —*— H,(Z,(O)®D) ~=2% H,(C®D)
l= l._. l(@@id)*
H,(B,(C)® D) 22 H(Z,(C)® D) =224 H(H,(C)® D)
O, H, (B,(C)®D) —— H, ,(Z,(C)®D)

— s H,_(B,(O)®D) 2224 H,_(Z,(C)® D)

may be related in such a way that each rectangle commutes up to sign (see
the following exercise). Now the proof of the five lemma (Exercise 4, Chapter
2) only required commutativity up to sign; hence, we apply the five lemma to
conclude that

(® ®id),: H,(C® D) > H,(H,(C) ® D)

is an isomorphism. This completes the proof. O

EXERCISE 1. Show that in the diagram in the preceding proof each rectangle commutes
up to sign.

This proposition reduces the problem of computing the homology of the
chain complex C ® D to computing the homology of the simpler complex
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H_(C)® D. Note thatif c ® d € H,(C) ® D,, then d(c ® d) = (— 1)’c ® 0d, so
that up to sign the boundary operator is just

id® d: H(C)® D, - H,(C)® D,_,.

Therefore, for p fixed H,(C)® D is a subcomplex of H (C)® D, in fact a
direct summand, and we conclude that

H,(H,(C)® D) =} H,(H,(C)® D).

Now if two boundary operators differ by sign only, it is evident that they
produce the same homology groups. Thus, we may assume that the bound-
ary operator in the chain complex H,(C)® D is id ® d. Note that the n-
dimensional component of this complex is H,(C) ® D,_,.

Since D is a free chain complex, we are in a position to apply the universal
coefficient theorem, Theorem 3.6, to the chain complex H,(C) ® D. Thus

H,(H,(C)® D) ~ H,(C)® H,_,(D) ® Tor(H,(C), H,_,_,(D)).

Summing these over all values of p, we have completed the proof of the
Kiinneth formula for free chain complexes:

5.2 Corollary. If C and D are free chain complexes, then
H(C®D)~ Y H(C)®H,MD)® ) Tor(H(C),H(D). O

ptg=n rt+s=n—1

ExaMPLE. Suppose c € Z,(C) but ¢ is not a boundary. Suppose further that
r-¢ = ¢c'for some ¢’ € C,,, and some minimal integer r > 0, so that ¢ repre-
sents a homology class of order r. Similarly let d € Z,(D) represent a homol-
ogy class of order r so that rd = dd’ for some d’ € D,,. Thenin (C ® D), 4+,
the element (¢’ ® d — (—1)’c ® d’) is a cycle because

e ®d—(—1Yc®d)=0'®d+ (-1’ ®dd — (—1)foc®d’

—(=1)*Pc® od’
=rce®d—c®rd
=rc®d—c®d)

=0.

In this way torsion common to H,(C) and H, (D) produces homology classes
in Hyy (4 (C® D).

Given spaces X and Y, the Kiinneth formula of Corollary 5.2 may be
applied to the singular chain complexes S,(X) and S,(Y) to give the
isomorphism

H (S, (X)®S,(Y))x~ ) HX)@H(Y)® ) Tor(H(X),H(Y))

p+gq=n rt+s=n—1
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We turn now to the problem of relating H,(S,(X) ® S,(Y)) to H (X x Y), the
homology of the cartesian product of X and Y.

The solution of this problem will be stated in terms of the acyclic model
theorem, a useful tool in homological algebra. To put this result in its proper
setting we require a number of definitions. A category € is

(a) a class of objects,
(b) for every ordered pair of objects a set hom(X, Y), of morphisms viewed as
functions with domain X and range Y,

such that whenever f: X - Y and ¢g: Y — Z are morphisms, there is an ele-
ment g o f in hom(X, Z). These are required to satisfy the following axioms:

1. Associativity:(hog)o f =ho(go f).
2. Identity: For every object Y there is an element 1, € hom(Y, Y) such that
if f: X > Yandg: Y— Z are morphisms, then ly0 f = fandgo I, =g.

ExaMmpLES. (i) The category whose objects are sets and whose morphisms are
functions.

(i) The category of abelian groups and homomorphisms.

(iii) The category of topological spaces and continuous functions.

(iv) The category of pairs of spaces and maps of pairs.

(v) The category of chain complexes and chain maps.

If € and 2 are categories, a covariant functor T: € — 2 is a function that
assigns to each object X in € an object T(X) in 2 and to each morphism
f: X = Y amorphism T(f): T(X)— T(Y) such that

(@) T(ly) = 1y,
(b) T(fog)=T(f)o T(g).

A functor K is contravariant if for {1 X - Y, K(f): K(Y) —» K(X) and

@) K(ly) = gy,
K(f°g)=K(g)° K(f)

EXAMPLES, (1) The correspondence (X,A4)— S,(X,A4) and [f:(X,4)-
(Y,B)] = [f4: S.(X,A) - S,(Y,B)] is a covariant functor from Category (iv)
above to Category( V).

(2) The correspondence X —» HY(X;G)and [f: X - Y] - [f*: HY(Y;G) -
H"(X;G)] is a contravariant functor from Category (iii) to Category (ii).

Suppose that € and 2 are categories and T,, T,: € ».2 are covariant
functors. A natural transformation ©: T; —» T, is a function which assigns to
each object X in € a morphism 1(X): T{(X) — T,(X) in 2 such that com-
mutativity holds in
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TN
T(X) —— Ti(Y)
(X) «(Y)
T2(S)

L(X) —— T(Y)

whenever f: X — Y is a morphism in .

Now fix a category 4. Suppose that .# = {M,},. . is a specified collection
of objects in €. .# will be called the models of €. A functor T from € to the
category of abelian groups and homomorphisms is free with respect to the
models .# if there exists an element e, € T(M,) for each a such that for every
X in € the set

{T(f)(e,)lx € A, f € hom(M,, X)}

is a basis for T(X) as a free abelian group. A functor T from % to the category
of graded abelian groups is free with respect to the models .# if each T, is,
where T, is the nth component of T.

5.3 Theorem (Acyclic Model Theorem). Let € be a category with models .4
and T, T' covariant functors from € to the cateogry of chain complexes and
chain maps, such that T, =0=T, for n <0 and T is free with models M.
Suppose further that H(T'(M,)) = O for i > 0 and M, € . If there is a natu-
ral transformation
©: Ho(T) —» Ho(T"),
then there is a natural transformation
o T->T

which induces ®, and furthermore any two such ¢ are naturally chain
homotopic.

Proof. By the hypothesis Ty(M,) and T5(M,) are the respective cycle groups
in dimension zero. Thus, there are epimorphisms = and =’ onto the homology
groups:

7;Z)(Ala) _"_> HO(T(Ma))

[ [

= —mm——-

To(M,) —=— Ho(T'(M,))

Since Ty is free with models .#, there is for each a« a prescribed element
e e Ty(M,). So for each a we choose an element ¢(e?) € T;(M,) such that
o g(ef) = ® o n(e]).

Let f: M, —» X be a morphism in 4. Then T(f)(e?) is a basis element in
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To(X) and we define ¢(T(f)(e2)) = T'(f)(#(e2)). This defines ¢ on the basis
elements of the free abelian group T,(X) so there is a unique extension to a
homomorphism

¢ To(X) = To(X).

To check that ¢ induces the original ® on zero-dimensional homology, we
must show that the front face of the followng diagram commutes:

ATo(X) —— T5(X)

To(M,)------ J L TyM) |
L Ho(T(X)) i Ho(T'(X))
L ° A

Hy(T(M,)) —— Ho(T'(M,))

The bottom face commutes by the naturality of ®. The left and right faces
commute since T(f) and T'(f) are chain maps. The back face and the top
face commute by definition; thus, the front face must also commute.

Since T, is free with models .#, there is for each o a prescribed element
el € T,(M,). From the above, ¢(de}) is a well defined element of Ty(M,).
Moreover, since ¢ induces ® on zero-dimensional homology, ¢(el) must be a
boundary in Tg(M,). So let ¢ € T{(M,) with dc = #(de}) and define g(e!) = c.
Using the above technique we extend ¢ to a homomorphism ¢: T,(X) —
T7(X) for each object X in €.

Suppose ¢ is defined in dimensions less than n, and consider the set {e]]e] €
T.(M,)} given by the fact that T, is free with models .# By the inductive
hypothesis ¢(dej) is a well-defined element of T,_;(M,). Since it is a cycle and
T’ is acyclic in positive dimensions, it is also a boundary. So define ¢(e}) to
be an element of T, (M,) whose boundary is ¢(de;). Once again ¢ may be
extended using the fact that T is free with models .#. This defines ¢ on T(X)
for all objects X in €.

EXERCISE 2, Show that for each X in 4, ¢: T(X) » T'(X) is a chain map, and for each
morphism [ X > Y, 9o T(f)=T'(f) o ¢.

This defines the natural transformation ¢: T — T'. Suppose now that
¢ T > T’ is another such natural transformation, inducing ® on zero-
dimensional homology. For each object X in ¥ we must construct a chain
homotopy 7 : T(X) —» T'(X), which is natural with respect to morphisms in
%, having

0T +T0=¢—¢.
We define 7 inductively. Suppose that it has been defined in dimensions less

than n, and recall that T,(X) has basis { T(f)(eZ)} as a free abelian group. For
n > 0 the element
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¢lez) — ¢'(ex) — T (0e;)
is a cycle because
Oplex) — 04'(eg) — CT (Deg) = ¢ley — ¢'0eg — (— T 00e; + ple; — §'0¢;)
=0.

Since T is acyclic in positive dimensions, this cycle must bound, so define
J(el) to be an element of T,,,(M,) whose boundary is (¢(e;) — ¢'(e) —
T (0el)). Again we extend 7 to be defined on T(X) for all objects X in € by
using the fact that T is free with models 9. This same technique will work for
the case n = 0 because the cycle ¢(e?) — ¢'(e2) must bound. This is a conse-
quence of the fact that ¢ and ¢’ induce the same homomorphism (®) on
zero-dimensional homology.

This 7 gives the desired chain homotopy and is natural with respect to
morphisms of %, so the proof is complete. O

Note: The technique in the proof of Theorem 5.3 is essentially the same as
that used in Theorem 1.10 and Appendix I, although the former is in a more
general context.

EXERCISE 3. Reprove Theorem 1.10 as a corollary to the acyclic model theorem.

We now want to apply this theorem to relate the homology of the chain
complex S (X x Y)to the homology of S,(X) ® S,(Y). Let & be the category
of topological spaces and continuous functions. (This may easily be general-
ized to the category of pairs of spaces and maps of pairs.) Denote by € x ¢
the category whose objects are ordered pairs (X, Y) of objects in 4 and whose
morphisms are ordered pairs (f, f) of morphisms in € with, f: X - X" and
Y > Y. Let .4 be the set of all pairs (67,67, p, ¢ > 01in € x € where ¢*
is the standard k-simplex. Define two functors from € x € to the category of
chain complexes and chain maps by

TX,Y)=S,(X x ¥) and T/(X,Y)=S,(X)® S,(Y).

Both of these functors are free with models #. Furthermore, both have
models acyclic in positive dimensions.

The path components of X x Y are of the form C x D, where C and D are
path components of X and Y, respectively. As a result there is a natural
isomorphism

Ho(X x Y) 3 Hy(S,(X) ® S, (1))

because Hy(S,(X) ® S,.(Y)) = Hy(X) ® Hy(Y) by the Kiinneth formula of
Corollary 5.2.

From the natural transformations ® and ®~! we apply the acyclic model
theorem, Theorem 5.3, in each direction to conclude that there exist chain
maps
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#: S (X x ¥) > S (X)® S,(Y)

and

$: S, (X)® S, (Y) > 5,(X x Y)

that induce ® and ®~*, respectively, in dimension zero.

Thus, ¢ o ¢ is a chain map from 5,(X) ® S, (Y) to itself inducing the iden-
tity on zero-dimensional homology. But the identity chain map also has this
property, so by Theorem 4.3, ¢ o ¢4 is chain homotopic to the identity. Simi-
larly the composition ¢ ¢ ¢ is chain homotopic to the identity on S, (X x Y).
Therefore

bt Ho(X x Y) > H, (S,(X) ® 5,(Y))

is an isomorphism with inverse @,. This completes the proof of the
Eilenberg—Zilber theorem:

5.4 Theorem. For any spaces X and Y and any integer k there is an
isomorphism

by H(X X Y) = Hi(S,(X) ® S,(Y)). O

By combining Theorem 5.4 and Corollary 5.2 we have established the
Kiinneth formula for singular homology theory:

5.5 Theorem. If X and Y are spaces, there is a natural isomorphism

H(X x Y) H(X)®H(Y)® Y Tor(H,(X),H(Y))

ptq=n r+s=n-—1

for each n. O

Suppose now that we have fixed a natural chain map
$: S (X x Y) o S (X)® S,(Y)

for any spaces X and Y with the above properties. The composition
#3!
H(X)® H(Y) = Hp, ((S,(X) ® S,(Y)) —> Hp, (X x Y),
where the first homomorphism takes {x} ® {y} into {x ® y}, is called the
homology external product. The image of {x} ® {y} under the composition is
usually denoted {x} x {y}. From the Kiinneth formula we may conclude
that this is a monomorphism for any choice of p and ¢. In fact the Kiinneth
formula for singular homology may be restated as a split exact sequence
0- Y HX)®H(Y)->H/(X xY)> Y Tor(H(X),H(Y))—0,
ptg=n r+s=n—1
where the monomorphism is given by the external product.
Our primary purpose now is to construct the analog of this in cohomol-
ogy, that is, a product
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HP(X;G,) ® HY(Y;G,) » H™* (X x Y;G, ® G,).

If xeSP(X;G,) and fe SUY;G,), then a: S, (X) - G, and f:S,(Y) - G,
are homomorphisms. Denote by a x f the homomorphism given by the
composition

a®p

SpealX x Y) 5 S, (X)® S5,(Y) 225 G, ® G,

ptaq

where x ® f is defined to be zero on any term not lying in 5,(X) ® S(Y).
Thus, « x f€ SP*YX x Y;G, ® G,). This defines an external product on
cochains

SP(X;G) ® SUY;G,) » SPT(X x YV, G, ® G,).
5.6 Proposition. If a2 € S(X;G,) and € SUY;G,) are cochains and o x f e
S$P*(X x Y;G, ® G,) is their external product, then
oo x B) =(5a) x B+ (— 1)Px x 3.

(This is the derivation formula for cochains.)

Proof. The diagram
Sprget(X X ¥) —2— S (X)®S,(Y)

é é

SpigX X ¥Y) —*— S (X)®S,(Y) =L 6,®6,
commutes since ¢ is a chain map. Thus
3o xp)=(x®Pog)od=(®p) oo
On the other hand
(62) X B=((00)® B) o @ and ax of=(@®3f)o ¢

Therefore, it is sufficient to check the behavior of these three homomor-

phisms on the image of ¢.
Let e ® c be a basis element of S,(X) ® S,(Y). Then (« ® f) o ¢ will be zero
on e ® ¢ unless

(1) ee S, (X)and ce S(Y) or
(ii) ee Sy(X)and ce S, (Y)

In the first case

(@®p)odle®c)=(2® P)(Pe®@c + (- 1)’ e® dc)
a(le) ® p(c) + 0
((60) ® )(e ® c).

In the second case
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(@®P)ode®c)=(a® ) (Fe®c + (—1)Pe® dc)
= (—1)Pa(e) ® B(Jc)
=(—1)P(2a® 3B)(e ® c).

Since all three homomorphisms will be zero on any basis element not of the
form (i) or (i1), we conclude that d(x x B) = (da) x B + (—1)P(a x f). O

5.7 Corollary. This induces a well-defined external product on cohomology
groups

HY(X;G,) ® H(Y;G,) » HP" (X x Y;G, ® G,)
given by {x} x {B} = {x x B}.
Proof. This will follow immediately from three consequences of Proposition
5.6:

(a) cocyle x cocycle is a cocycle;
(b) cocycle x coboundary is a coboundary;
(c) coboundary x cocycle is a coboundary.

If d2 =0=9p, then d(x x B)=(d2) x B +(—1)’a x 6 =0. This estab-
lishes (a); (b) and (c) follow in similar fashion. O
The product given by Corollary 5.3 is the cohomology external product.
Exercise 4. If f: X' > X and g:Y' > Y are maps, {2} € H(X;G,), and {f} e

HI(Y;G,), show that
(f x @* () x {B}) = f*{a} x g*{B}
in H** (X' x Y';G, ® G,).
Let R be an associative commutative ring with unit. So there is a homo-
morphism u: R ® R — R given by u(a ® b) = ab. We now specialize the co-

homology external product to the case where G, = R = G,. Fora € $?(X; R)
and B e S9(Y;R) define x x, f e SP"9(X x Y;R) to be the composition

S d X x V)5 S,(X)®S,(Y) Z5R®RSR.
As before this induces a well-defined product on cohomology groups
H?(X;R)® HY(Y;R)—» H?*4(X x Y;R)
by taking {«} ® {f} into {a x, f}.

ptq

5.8 Lemma. Let {a} € H?(X;R) and {f} € HY;R) and define the map T:
X x Y>> Y x XbyT(x,y) = (y,x). Then

T*: HP*9(Y x X;R) - H?*%(X x Y;R)
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has
*({B} x1 {o}) = (=1D*({a} x, {B})
Proof. Define T': S, (X) ® S,(Y) - S,(Y)® S,(X) on a basis element e ® c,
where e e S (X )andceS( ) by
Te®c)=(—Dc®e.
Then consider the diagram

S, (X x ¥) — S, (X)®S,(Y)

Y‘)pqa@p
T R®R —£— R.

e
S, (Y x X) 4 5. (Y)® S, (X)

It is evident that (— 1)PPu o (a ® B) = uo (B ® o) o T' since R is commutative.
Restricting our attention to the rectangle, we observe that the composition
¢ o T, is a chain map, since both ¢ and T, are chain maps. We also claim that

o ¢ is a chain map. To establish this it is sufficient to show that T is a
chain map, so let e € S,(X) and ¢ € S,(Y). Then

T'olle®c)=T (e ®c + (—1)Pe ® Oc)
= (- 1)(p-1)qc ®de + (— 1)p+p(q—1)ac ®e
=(—-1)r Mo @de + (—1)%c ®e.

T,

On the other hand
CoT(e®c)=0(—1)"c®e)
=(—=1P0c e+ (- 1) ® de
=(=1)Mc®e+ (—1)P*Vc ® de.

Since these two expressions are equal, we conclude that T" is a chain map.

Now if we check on zero-dimensional homology, it is evident that T o ¢
and ¢ o T, induce the same transformation. By applying the acyclic model
theorem, Theorem 5.3, we conclude that these two chain maps are naturally
chain homotopic. Therefore, the cohomology class represented by the com-
position p o (8 ® «) o ¢ o T, is the same as the class represented by (—1)Pyu o
(@ ® f) o ¢. In other words

T*({B} >, {a}) = (= DP*{a} x; {B}. U

59 Lemma. If {¢} € H*(X;R)and {f} e H¥*(Y;R)and - X' > X, g: Y' > Y
are maps, then

(f < g*(la} <, {B}) = f*{a} x, g*{B}.

Proof. This follows routinely as in Exercise 4. O
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5.10 Lemma. If {¢} € H¥*(X;R), {i} € H*(Y;R), and {y} € H*(WR), then
({a) <o {BD <1 {v} = {a} x1 ({8} > {7})

ExXERCISE 5. Prove Lemma 5.10. O

Observe that if we take Y = point, then H*(Y; R) = H%(Y;R) = R and the
external product

H*(X:R)® H*(Y;R) » H*(X x Y;R)

has the form
H*(X;R)® R » H*(X: R).
This gives H*(X; R) the structure of a graded R-module. Moreover, it fol-

lows from Lemma 5.9 that any map f: X' —» X induces an R-module
homomorphism

[* H*(X;R) > H¥*(X';R).

For any space X let d: X - X x X be the diagonal mapping given by

d(x) = (x, x). Then the composition
HP(X;R)® HYX;R) > H**%(X x X:R) S H?*9(X:R)

sending {a} ® {f} into d*({a} x, {#}) defines a multiplication in the R-
module H*(X; R). This is called the cup product and is usually written {a} U
{B} ot just {a}-{B}.

By applying the previous lemmas we may conclude the following impor-
tant result.

5.11 Theorem. For R a commutative associative ring with unit, X a topological
space, H*(X; R) is a commutative associative graded R-algebra with unit. Any
continuous function f: X' — X induces an R-algebra homomorphism

f* H*(X;R) > H*(X';R) of degree zero. dJ

As a point of information, a graded R-algebra M = ) , M* is commutative
if given any homogeneous elements m, € M? and m, € M4, we have

m,-m, = (—1)P"m,m, in Mr*e

Note: It is important to observe that while all of the development of prod-
ucts so far has been in terms of single spaces for the sake of clarity, the same
constructions may be duplicated using pairs of spaces and relative homology
and cohomology groups. It is important to point out that in this context, the
cartesian product of pairs is another pair given by

X, A x(Y,B)=(X x Y, X x BuA xY).
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ExERCISE 6. Is the connecting homomorphism in the long exact cohomology sequence
for the pair (X, 4) an R-module homomorphism? An R-algebra homomorphism?

The essential tool used in defining the cup product of two cohomology
classes is the composition of chain maps

S,(X)35,(X x X) 55,(X)® S, (X).

More generally, suppose that 7: S, (X) = S, (X) ® S,(X) is a chain map such
that

(i) 1(a) = a ® a for any singular O-simplex a;
(i) * commutes appropriately with homomorphisms induced by maps of
spaces.

Then by applying the acyclic model theorem, Theorem 5.3, we see that any
such T must be chain homotopic to ¢ o d,. This implies that the cup product
on cohomology classes is independent of the choice of 7 as long as the stated
conditions are satisfied. A chain map t with these properties is usually called
a diagonal approximation. For use in later definitions and examples it will be
helpful to have a specific example for 1. The following is the Alexander-
Whitney diagonal approximation.

Given a singular n-simplex ¢: ¢” — X in a space X define the front i-face
:$, 0 < i < n, to be the singular i-simplex

B, ... t) = Plto,....1,0,...,0).
Similarly let the back j-face ¢;, 0 < j < n, be the singular j-simplex
#ilto, ... 1) = #0,...,0,tg,.... 1)
Then define
=) 4®¢

i+j=n
for ¢ a singular n-simplex in X.
For example, if ¢:02 - 62 is the identity, then 1(¢) =0® ¢ + (0,1) ®
(1,2) + ¢ ® 2 where 0 and 2 are the obvious 0-simplices and (0, 1) and (1, 2)
are 1-simplices (see Figure 5.1).

S
()

0 i 0 1

Figure 5.1
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It is evident that Properties (i) and (ii) above are satisfied by t. The only
mild complication is left as the following exercise.

ExERCISE 7. Show that the Alexander—- Whitney diagonal approximation t is a chain
map.

Using this specific model for 7, let us see exactly what the cup product
looks like. Let o e SP(X;R) and fe S%X;R) and ¢ be a singular (p + q)-
simplex in X. Then

{av B é)

is the image of the composition
65 T8 ® ¢ a(,0) ® B(d) 5 a(,8) B4y
Thus, Cau B, ¢) = {a, 8> (B, ¢,
ExaMPLE. We want to compute the cohomology ring of the two-dimensional
torus 7% = S* x S, Recall that H,(T?;Z) ~ Z ® Z, and the generators may

be represented by @ and f in Figure 5.2b. For H,(T?;Z) ~ Z we may use as
generator the 2-chain ¢ — y, where (Figure 5.2¢)

$0) =a,, d(l)=a;, @¢2)=a,
and
¥(0) = a,, Y(l) = as, Y(2) =a,

(see Figure 5.2a).
Using the universal coefficient theorem, Theorem 3.14, we see that
HY(T?:Z) ~ Hom(H,(T?; Z), Z) and we choose as generators «, 8, where

W@ =1 apf)=0,
p@E@ =0, BB =1

Now

a;

- D

02
@) (b) ©)

Figure 5.2
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U g =Y =<0,18) <{B.dr> — ¥ {Bi)
= (0, %) (B, B> — (. By (B>
=1-0
=1

On the other hand
ruad =y =@ < B> — (o, B (&)
= 0.

Similarly (v f,¢ — > = 0. Since H*(T?*;Z) ~ Hom(H,(T*,2),2) = Z, we
now have computed the cohomology ring H*(T?; Z). Thus, H*(T?; Z) is the
graded algebra over Z generated by elements « and 8 of degree 1, subject to
the relations

2% =0, B*=0 af=—Pa

Note: This has the form of an exterior algebra on two generators. How
about the cohomology ring of the n-torus T" = S* x -+ x §'?

Suppose that f: $*"~! — S"is a map, n > 2. There is a procedure for asso-
ciating with such a map an integer H(f'), the Hopf invariant of f. This may be
defined using the cup product in the following way: Let {a} and {8} be
generators of the cohomology groups H*""!($%""!; Z) and H"(S"; Z), respec-
tively, represented by the cocycles o and f. Since {f} U {#} = 0, the cocycle
B p must be a coboundary. That is, there exists a cochain y € $**7'(S"; Z)
with

oy =pup.

Since H*(S?""!; Z) = 0, the cocycle f *(f) € S*(S?""!; Z) must be a cobound-
ary, and there exists a cochain ¢ in $"7}(§2""1; Z) such that de = f*(p).
Now ¢ U f*(B) and f *(y) are cochains in $2"7!($%""!; Z). Moreover

deuf*(B) — [*W) = dewde) — fH(BUB)
=dewde — fH(B)w fHB)
=0.

So we define H(f) to be the integer which when multiplied times {«} gives the
cohomology class of ¢ U f *(B) — f*(). That is

{eu fA(B) = [*(} = H() {a}.
EXERCISE 8. (a) Let f: §?""! — 5" be a map of Hopfinvariant k. If 5: 2! - §2" ! and

g: 8" — §" are maps of degree p, determine H(gf) and H( fg).
(b) If
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LR

is a commutative diagram where f has Hopf invariant k, how are the degrees of h and
h related?

Let us give an alternate definition for H(f). Recall that §" and $**~* may
be given the structure of finite CW complexes, each having only two cells.
Given a map f: S"7! - §", we denote by S the space obtained by attaching
a 2n-cell to 8" via f (see Chapter 2). Then S} is a finite CW complex with three
cells, of dimension 0, n, and 2n. Applying the technique of Theorem 2.21 we
see that since n > 1, the cohomology of Sj is given by

. Z for i=0,n 2n
HY(SH) =~ L
(59 {0 otherwise.
Denoting by b € H(S};Z) and a € H*"(S}; Z) a chosen pair of generators, we
define H(f) to be that integer for which b*> = H(f) ain H*"(S}; Z).

ExeRrciSE 9. Show that the two definitions of H(f) are equivalent.

In order to show that H(f) is an invariant of the homotopy class of f, we
need the following result due to J. H. C. Whitehead.

5.12 Proposition. If f;,, f;: S* = X are homotopic maps into a space X, then
the identity map of X extends to a homotopy equivalence

h: X, — X,

Proof. Let { f,} be a homotopy between f, and f; and denote an element of
DP*! by Ou, whereue SPand 0 < 0 < 1.

Given a radius in the attached disk in X, (Figure 5.3a), the inner half
should be mapped onto the corresponding radius in X, . Then the outer half
is used to trace out the path of the homotopy from f (u) to f, (1) (Figure 5.3b).
Specifically then define the map k by

h(x) = x for xe X;
h(Bu) = 26u for ueS, 0<f6<i;
h(Bu) = f,_ (1) for uesS?,, 1<6<i1

Defining a similar map h': X, — X, ,itis easily seen that the compositions
hoh’ and h’ o h are homotopic to the respective identities. O
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A
)

fl(u)
fo(u) fo(u)

Figure 5.3

5.13 Proposition. If f,, f,: S*""* — S" are homotopic maps, then H(f,) =
H(f,).

Proof. Let h: S} — 57, be the homotopy equivalence given in Proposition
512, If iy: (D", 8" ') > (§}7,,S") and i,: (D*",S?""') > (S}, S™), denote the
relative homeomorphisms corresponding to f; and f;, the diagram

(DZn’SZn—l) to (S;O,S")
i h

(S7,,8")
is homotopy commutative. This homotopy is easily defined by setting
g.(0u) = h o io((1 — $1)0u).
This implies that the diagram of cohomology groups
h*

H>™(Sp,,S") —"— H>(S},,S")

%

P i*

HZ"(DZ", SZn—l)

is commutative. Thus, a choice of an orientation for D*" dictates compatible
choices of generators

a, e H™ s} ,S" and d, e H*"(S},,S™)
and corresponding choices of generators
a, € H*(S}) and ao € H*'(S7,)

such that h*(a,) = a,.
Furthermore, if b, € H"(S} ) and b, € H"(S}, ) are generators corresponding
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to a chosen orientation of D", then since 4 is the identity on S", it follows that

h*(b,) = b,.
Therefore
H(fo) ao = b3 = (h*(b,))?
= h*(b?)
= h*(H(f,) a,)
= H(f,) h*(a,)
= H(f}) a,,
and
H(fo) = H(f)) 0

Note: If n is odd, the commutativity of the cup product implies that b2 =
—b?, so that H(f) = 0. Thus, the Hopf invariant can only be nonzero for
maps f: S*7 5 §2n,

5.14 Proposition. For any n > 0 there exist maps from S*"~! to S*" of arbi-
trary even Hopf invariant.

Proof. As a corollary of Exercise 8, it is sufficient to show that there exists a
map with Hopf invariant + 2.

Recall that $2" x §2" may be given the structure of a finite CW complex
having one 0-cell, two 2n-cells, and one 4n-cell (see Proposition 2.6). Further-
more, there is a map

f: S4n—1 - SZn v SZn

where S2" v §2" is the 2n-skeleton of $2" x §2" such that $2" x §2" is the
space obtained by attaching a 4n-cell to $2" v $2" via f.
Define a map

g: SZn v SZn N SZn
by g(x,p) = x, g(p,y) = y, where §2" v §2" is identified with
(SZn x p)U(P x SZn) c SZn x SZ",
From the commutative diagram

S4n—1 S SZn v SZn

af

we see that g induces a map
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G §3" x S = (2" v §7"), — S21.

Using this map § we want to prove that the Hopf invariant of gf is + 2.

Let e € HO(p), 1 € H°(S?"), and c € H*"(S") be generators of these infinite
cyclic groups. Then H**(S?" x S$?") is the infinite cyclic group generated by
¢ x ¢ and H?"(S?" x §*") is the free abelian group with basis consisting of
1 x cand ¢ x 1. As before let a € H*'(S}7) and b e H*"(S}}}) be generators of
these infinite cyclic groups.

First, we must compute §*(b) e H**(§?" x $?"). If j: p —> $*" is the inclu-
sion, then both rectangles in the following diagram commute:

g*

HZn(ngfn) HZn(SZn x SZn) x HZn(SZn) ® HO(SZ")

:li* l(id x j)* = [(id)*®j*

H"(S*) —— H™(S™ xp) —F— H™(S*")®H(p)
Thus
i*(b) = tc x e = £(id)*(c) x j*(1)
or
(id x j)*g*(b) = £(id x j)*(c x 1).
This means that the element
g*b)y £ e x 1

is in the kernel of (id x j)* for some choice of sign. Now the kernel of
(id x j)* in H*"(§*" x $?")is the infinite cyclic subgroup generated by 1 x c,
so

g*B) £ cx 1 =m(l x¢)

for some integer m.
By the same argument, §*(b) £ 1 x ¢ = k(c x 1) for some integer k. These
two properties together imply that with a proper choice of sign, we have

g¥h)=xex1+1xec
It can be easily checked that
(tex T 1 xe)?=(x1)*+2cx1)(1xc)+(1 xc)?
=c2x14+2cxc+1x¢c?
= +2c X,

since ¢z = 0.
Finally, since

g*: H*(SZp) — H*"(S?" x §*")

is an isomorphism,
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This proves that H(gf) = +2. O

There remains the question of the existence of maps having odd Hopf
invariant. Using the results of the next chapter we will be able to show that
the Hopf maps S* —» §? and §” — S* each has Hopf invariant one. By using
the Cayley numbers, one can define an analogous map S'°> — S® of Hopf
invariant one. Results of Adem [1952] on certain cohomology operations
imply that there can exist maps f: $**"! - §2" of odd Hopf invariant only
when n is a power of 2. Finally, there is a deep theorem due to Adams [1960],
that for n # 1, 2, or 4 there is no map f: $*"~* - §" of odd Hopf invariant.
An important consequence of this theorem is that the only values of n for
which R" carries the structure of a real division algebra are: n = 1 (real num-
bers), n = 2 (complex numbers), and n = 4 (quaternions). [ See Eilenberg and
Steenrod, 1952, p. 320].

As a reference for further information on the Hopf invariant we recom-
mend Hu [1959]. We cite only briefly one further result: two maps from §3
to S? are homotopic if and only if they have the same Hopf invariant.

As the final topic of this chapter we introduce a variant of the cup product
which will be useful in the following chapter. Let X be a space and R be a
commutative ring with unit. If o € S°(X; R) we may view a as a homomor-
phism of all S, (X) into R by setting it equal to zero on elements of dimension
different from p.

The composition

S¢(X) 5 S,(X) ® 5, (X) 225 R® 5,(X)
when tensored throughout with R yields
R®S,(X) B R®S,(X)® S, (X) 228 R® R®S,(X) 225 R® S, (X).
If c € S,(X;R) = R® S,(X), we define the cap product of o and ¢, « "¢, to be
the image of ¢ under this composition. Note that

ance S, (X;R)

For example, suppose t is the Alexander—Whitney diagonal and ¢ is a
singular n-simplex. Then the above composition has

1®¢_) 1 ®{Z l¢®¢j}_) 1 ®a(p¢)®¢n—p_)1(p¢)®¢n*p'
i+j=n

If we interpret R ® S,(X) as the free R-module generated by the singular
simplices of X, then
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10 G = 0(,4) Gup-

It is evident that this is closely connected to the cup product. To make this
relationship specific, let « € SP(X; R), f € SY(X;R)and ¢ € S,,,(X; R), where ¢
is a singular simplex. Then

Bua,gd = p(,0) x(d,).
On the other hand
Ca, B g) =<0, B(o8) 6> = B(,8) 2(8),)-
Since this is true for all ¢, it follows that for any c € §,,,(X; R),
(5.15) {fuac) =L fnc).

Finally, we must determine the action of ¢ on the chain & nc. To do this
we evaluate an arbitrary cochain y on d(x N ¢),

llanc)y =<oy,ancy = {audy,c).
Suppose that « € SY(X;R), c € S,(X; R) so that x n ¢ € §,_,(X; R). Recall that
davwy)=0d0auy+ (=1 avdy

or
2w dy =(—1)" 6@ uy) — By uy).

So by substituting into the previous equation we have
Gdano))y = (=1 avwy —dauy,cd
= (—)[Knandcy — y,0anc)y]
= (=) andc — danc)).
Since this is true for all cochains y, it follows that
(=10 (xnc)=(xndc) — (danc)

From this derivation formula we conclude that the cap product on chain
groups induces a well-defined product on homology groups which takes the
form

HYX R)® H(X;R)—> H,_,(X;R)

and sends {o} ® {c} into {a N c}.

Exercise 10. Formulate and prove a statement showing that the cap product is natu-
ral with respect to homomorphisms induced by mappings of spaces.

Exercist 11. A graded group {G,} is said to be of finite type if for each g, G, is finitely

generated. Prove the following theorem.

5.16 Theorem (Cohomology Kiinneth formula). Let G and G’ be abelian
groups with Tor(G,G') = 0. If H (X;Z) and H,(Y; Z) are of finite type, then
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there is a split exact sequence

0> Y HX,G)®H(Y;G)>H"X x Y;G® G

ptg=n

- Y Tor(H"(X;G),H(Y;G")) - 0. 0

p+g=n+1
Exercise 12. Let X and Y be spaces and R be a commutative ring. If u; € H?(X; R),
u, € HY(X;R), v, € H'(Y;R), and v, € H¥(Y; R), then in H?*9*"*(X x Y;R) we have
(uy X v1) Uy X vz} = (=1)F(uy U uy) x (v Vv,)

Exercise 13. If ue H?(X;R), ve HY(Y;R), p;: X x Y > X, and p,: X x Y > Y are
the projection maps, then
u x v=pt(u)wpv)
Exercise 14. If u; e H?(X;R), u; € HYY;R), z, € H,(X;R), and z, € H,(Y; R), then in
H, . p-q(X x Y;R) we have
(uy x uz) N (21 % 23) = (= 1" Pluy v zy) x (uy N zy).

ExErcise 15. Show that the cap product may be extended to relative homology and
cohomology groups of a pair to give products of the form

HY(X, A)® H,(X, 4) > H, (X)
and

HYX)® H,(X,A) » H,_ (X, A).



CHAPTER 6

Manifolds and Poincaré Duality

This chapter deals with some of the basic homological properties of topologi-
cal manifolds. Since the main result is the Poincaré duality theorem, we begin
with a simple example to establish an intuitive feeling for this classical result.
This is followed by material on topological manifolds and a detailed proof of
the theorem. The approach used follows the excellent treatment of Samelson
[1965, pp. 323-336] and proceeds by way of the Thom isomorphism theo-
rem. Several applications of the theorem follow, including the determination
of the cohomology rings of projective spaces and results on the index of
topological manifolds and cobordism.

Before proceeding with the general approach, let us see how the theorem
may be motivated from an example. Briefly, the Poincaré duality theorem
will say that if M is a compact oriented n-manifold without boundary, the ith
Betti number of M is the same as the (n — i)th Betti number for 0 <i < n.In
the following example we will indicate how such a correspondence arises.

Suppose we are given a portion of a triangulated surface K as shown in
Figure 6.1. By taking the first barycentric subdivision (see Appendix I) we
arrive at a new triangulation K’, as shown in Figure 6.2. If v is a vertex in this
new triangulation, define the star of v in K’ to be the union of all open cells
in K’ that contain v in their closure. Thus, star(A4; K') is the open 2-cell shown
in Figure 6.3, whereas star(vy; K') is the open 2-cell shown in Figure 6.4.

Given a simplex ¢ in K, we define its dual cell 6* in K’ by

o* = () star(v;K’),

v

where v ranges over the vertices of ¢. For example, the dual of the vertex 4 is
star(A4; K'), the closure of Figure 6.3, while the dual of the 2-simplex ABC is
the vertex vq. Similarly the dual of the 1-simplex AB is the 1-cell joining v,

143
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Figure 6.4

B

Figure 6.5

Figure 6.6

and v,. Note that while the dual of a simplex need not be a simplex, it is a cell
in the complementary dimension.

As a specific example we take the boundary of a 3-simplex, a triangulated
surface homeomorphic to 2 (Figure 6.5). This surface may be viewed as a fin-
ite CW complex having four 0-cells, six 1-cells, and four 2-cells. By taking the
dual cells of each of these simplices we get a corresponding CW decom-
position for the same space as shown in Figure 6.6. Here we have four 2-cells
(A*, B* C* D*), six 1-cells (AB*,..., CD*), and four O-cells (ABC*,..., BCD*).

To compute the Betti numbers of these complexes we use the cellular chain
complex of Theorem 2.21. Recall that if Y is a finite CW complex and

Civl

Cror(Y) —1 C(Y) —5 Coy(Y)
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is a portion of the chain complex, then the ith Betti number
Bi(Y) = aY) — 9,01(Y) — ydY),

where a,(Y) is the number of i-cells in Y and y;(Y) is the rank of the image of

.

i

Denoting by X and X* the two structures above we may make the follow-

ing comparisons:

ag(X) =4
givenby A, B,C, D

2 (X)=6
givenby AB,...,CD

2, (X)=4
given by ABC, ..., BCD

70(X) = 0

v (X) = 3, basis
givenby A— B, A—-C,A—-D

v2(X) = 3, basis
given by ¢(ABC — ABD),

&(ABC — ADC), &(ABC — BCD)

73(X) = 0.

a(X*) =4

given by A*, B* C*, D*
0, (X*)=6

given by AB*, ..., CD*
ag(X*) =4

given by ABC*, ..., BCD*
73(X*) =0

v2(X*) = 3, basis
given by d(4* — B¥),
0(A* — C*), 0(A* — D¥)
71(X*) = 3, basis
given by ABC* — ABD*,
ABC* — ADC*, ABC* — BCD*
Jo(X*) =0.

Putting this information together, it is evident that f,(X) = B,(X*) =1,
Bi(X) = B, (X*) =0, and B,(X) = Byo(X*) = 1. It may be helpful to keep this
sort of geometric picture in mind as we develop the algebraic techniques
necessary to establish the theorem in its general setting.

In R" define the half-space H" to be the set of all points (x,...,Xx,)
such that x, > 0. A topological n-manifold is a Hausdorff space M having a
countable basis of open sets, with the property that every point of M has a
neighborhood homeomorphic to an open subset of H". The boundary of M,
denoted ¢M, is the set of all points x in M for which there exists a homeo-
morphism of some neighborhood of x onto an open set in H" taking x into
{(x1,. ., %)%, =0} = OH" < H".

> n

Exercist 1. Let h be a homeomorphism of an open subset U of H" onto an open
subset of H™. If x e U n ¢H", then show h(x) e éH"

It follows immediately from this exercise that if x e M, then all homeo-
morphisms from open sets about x to open sets in H" must map x into
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CH". M is an n-manifold without boundary if M = &, or, equivalently, if each
X € M has a neighborhood homeomorphic to an open set in R". A closed
n-manifold is a compact n-manifold without boundary.

ExAMPLES. (1) Any open subset of H" is obviously an n-manifold.

(2} For each point x € ", stereographic projection from — x is a homeo-
morphism from S" — {—x} onto R" This gives S" the structure of a closed
n-manifold.

(3} For each point y € RP(n) pick a point x € " with n(x) = y, where

n: §" - RP(n)

is the identification map. Let i: (D" — $"~!) — §" be the inclusion of the open
hemisphere centered at x. Then 7 o i is a homeomorphism of an open subset
of R" onto an open set about y. Therefore, RP(n) is a closed n-manifold.

(4) Let GL(n) denote the set of all real n x n matrices having nonzero
determinant. By ordering the entries we may view GL(n) as a subspace of R"’
and give it the induced topology. Under this identification, the determinant
function R** - R is continuous and has GL(n) as the inverse of the open set
R — {0}. Thus, GL(n) is an open subset of R"* and hence is an n%-manifold
without boundary.

(5) The Mobius band, formed by identifying the two ends of a rectangle so
that the indicated arrows coincide (Figure 6.7), is obviousty a 2-manifold with
boundary.

6.1 Lemma. If U is an open subset of R", then H(U) = O fori > n.

Proof. Before proceeding with the proof, we point out a slight generalization
of the chain complex in Theorem 2.21. If (X, A) is a finite CW pair, the groups

H(XP U A,XP' U A)

form a chain complex whose homology is H, (X, 4). Note that if every cell of
X of dimension greater than p is contained in A, then H;(X,A) = Ofori > p.
Let {z} € H(U) be an homology class represented by an i-cycle z, i > n.
The image of each singular simplex in U isa compact subset. Since z is a finite
linear combination of singular i-simplices, the union of the associated images
forms a compact subset X < U.
Define

Figure 6.7
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Figure 6.8

e=Inf{|lx —y||xe X,yeR"— U}

Note that ¢ > 0, since X is compact, R" — U is closed, and X n(R" — U) =
. Since X is compact, there exists a large simplex &" in R" such that X is
contained in the interior of &".

From Appendix I we know that there exists an integer m with mesh
Sd"&" <& Now consider Sd"E&" as a finite CW complex under the sim-
plicial decomposition. Let K be the subcomplex of Sd"&" consisting of all
faces of simplices which intersect X (Figure 6.8). Note that by construction

XcKcU.

A portion of the exact homology sequence of the finite CW pair (Sd"&" K)
has the form

+r o H,, (SA"S", K) » Hy(K) » H/(Sd"S") - -+

By our previous comments, H;,,(Sd"S", K) = 0. Also H,(Sd"S&") = 0 since
the space is a simplex, hence, a convex subset of R" (see Theorem 1.8). There-
fore, H(K) = 0.

Since z was a cycle in X it is also a cycle in K. The fact that H(K) =0
implies that z bounds an (i + 1)-chain in K. But this (i + 1)-chain also lies in
U; hence, z bounds a chain in U and {z} = 0. O

6.2 Lemma. If M is an n-manifold without boundary, then H(M) =0 for
i>n

Proof. Let z be ani-cyclein M, i > n. Then asin Lemma 6.1 we associate with
z the compact subset X = M, which is the union of the images of the singular
simplices which make up z. There exists a finite collection U,, ..., U, of open
sets in M, each homeomorphic to an open set in R", with X = | J U;. (Open
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sets of this type will usually be called coordinate neighborhoods or coordinate
charts.) We will show that {z} = 0 by proving that H,(| ) U;) = 0 so that z
must bound in | ) Uj.

Proceeding by induction on the number of coordinate neighborhoods, it is
true for m = I by Lemma 6.1. Suppose that

H(JQ U,.) =0

There is a Mayer-Vietoris sequence for the space (| Ji-; U;) v U,,,, which
has the form

(U U)@H( r+1)_’1‘Ii<rD1 D})_’Hiﬂ(([) Uj)mUrH)_’

The term on the right is zero by Lemma 6.1 since the space is an open subset
of a coordinate chart; similarly H,(U,,,) = O. It follows from the inductive
hypothesis that H,(| Jif} U;) = 0. This completes the inductive step. O

This result tells us that the nontrivial homology of such a manifold all
occurs in dimensions less than or equal to the dimension of the manifold.
When the manifold is connected but not compact, this result may be refined
to show that the top-dimensional homology group (dimension of the mani-
fold) must also be zero. To establish this, we need the following lemmas.

6.3 Lemma. Let U be open in R" and a € H,(R", U). If for every pe R" — U,
the homomorphism induced by inclusion

Jpt Hy(R", U) = H(R", R" — p)
has j,«(a) = 0, then a = 0.

Proof. The connecting homomorphism for the exact sequence of the pair
(R", U) gives an isomorphism

A:H(R" U)S3 H,_,(U).

We will prove that a = 0 by establishing that A(a) = 0 in H,_, (V).

So let b = A(a). Once again, since the “image” of a cycle representing b is a
compact subset of U, there exists an open set ¥ with ¥ compact < U and an
element b’ in H,_, (V) with i, (b") = b, i: V —» U the inclusion.

Let Q be an open cube containing V and define K = Q@ — Q n U (Figure
6.9). For each point p in K there exists a closed cube P containing p such that
PV = . From the diagram

H,,(V) —*—> H,,(U) —>— H®"U)

ST

Hyy(R"—p) —— H,,(R" - p) «—— H,R"R"—p)
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x ’ /B

Figure 6.9

in which the rectangles commute, it is evident that the image of b' under the

homomorphism
H, ,(V)-H, ,([R"~p)

is zero. A finite number of such closed cubes cover K, say P,, ..., P,.
Now suppose that the image of b" under the homomorphism

H,,(V)>H, (g —(P,u-UR))

is zero (this is certainly true when k = 0, since @ is contractible).
Denoting Q, = Q@ — (P, v --- U P,), consider the Mayer— Vietoris sequence
relating @, and R" — P, ,:

= H(Q v (R — Pyy))

mono

= H, ((Qr1) —— Hpi(Q) © Hoe i (R — Pryy) =

The first group is zero by Lemma 6.1. The images of 4" in the two direct
summands are both zero; hence, the image of b’ in H,_,(Qy,,) is zero. This
completes the inductive step and we conclude that the image of b’ under the
homomorphism

H, (V)= H, (0 — (P,u-UP,)) =00 H_(0~U)

is zero. Since the inclusion of V in U factors through Q n U, it follows that
the image of b" in H,_,(U), that is, b, is zero. Hence, a = 0. O

6.4 Lemma. If x and y are points in the interior of a connected n-manifold M,
then there is a homeomorphism h: M — M, homotopic to the identity, having
h(x) = y.

Proof. Note that since M is locally homeomorphic to H", M is locally path-
wise connected. That is, each point of M is contained in a pathwise connected
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Figure 6.10

open set. This implies that the path components of M are both open and
closed. Since M is connected, there can be only one path component, so M
must be pathwise connected.

Now if M is connected, so is M — dM = the interior of M (see the follow-
ing exercise). So let p: [0,1] = M — 0M be a path from x to y. This compact
subset of M — 0M may be covered by a finite number of open sets, each

homeomorphic to the open unit disk in R". Denote these disks by Uy, ..., U,
and the corresponding homeomorphisms by &y, ..., h,,.
Let x = x4, Xy, ..., Xx = y be a collection of points on the path with the

property that for each j, the segment from x; to x;,, is contained in some U;
(Figure 6.10). The desired homeomorphism may now be constructed induc-
tively. It is sufficient then to show that for O < j < k there is a homeomor-
phism h: M — M, homotopic to the identity, with h(x;) = x;.,.

So suppose x; and x;,, are in U,. Define a homeomorphism

gD =SSR
by

The inverse of g is given by

w

L
9=

Let ghi(x;) = (a,,a,,...,a,) and ghy(x;;,) = (b}, b,,. .., b,). Define the transla-
tion function

[R>S R
by f(w,,....,w,)=(w, + (b, — a,), ws + (b, — a,), ..., w, + (b, — a,)). Then
fis a homeomorphism with

f(ghi(xj)) = ghi(xj+1)'
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Moreover, f is homotopic to the identity via the homotopy
fwi,...,w) =W, + tby — a,),...,w, + t(b, — a,)), O0<t< 1.
Thus, we have a homeomorphism for each ¢
glofiog:D"— 8" >D"—§"!

that takes h;(x;) into h;(x;,,) when t = 1. Note further that, for each ¢, this
may be extended to a homeomorphism from D" to D" by defining it to be the
identity on the boundary (see Exercise 3).

Now define a homotopy k,: M - M by

h(z) = z if zeM -V,
Y hitogTlofiogoh(z) il zeU.

Then each h, is a homeomorphism, h, is the identity and h,(x;) = x;.,. This
completes the inductive step, so that by composing maps and homotopies we
may give a homeomorphism homotopic to the identity taking x into y. [

Note: We actually have proved something stronger than the conclusion of the
lemma. If f, g: X —» Y are homeomorphisms between topological spaces, then
f 1s isotopic to g if there exists a map F: X x [0,1] — Y such that

(1) F(x,0) = f(x);
(@) F(x,1) = g(x);
(3) for 0 <t < 1 the map x — F(x,t) is a homeomorphism of X onto Y.

The construction used in the theorem makes it evident that the map h is
isotopic to the identity.

EXERCISE 2. If M is a connected n-manifold, show that the interior of M, M — M, is
also connected.

EXERCISE 3. Let (ay,...,qa,) be a point in R" and define f: R" - R" by f(xy,...,x,) =
(x; + ay,...,x, + a,). Using the map g: D" — §""! - R" defined by g(z) = z/(1 — |z|),
show that the homeomorphism

g~1 OfO g: D" — Sn~1 N U] _Sn—l

may be extended to a homeomorphism D" — D" by defining it to be the identity on the
boundary.

6.5 Theorem. If M is a connected, noncompact n-manifold without boundary,
then H, (M) = 0.

Proof. First note that if p is any point in M, the homomorphism k,: H,(M) -
H,(M,M — p), induced by the inclusion, is identically zero. To check this let
{z} € H,(M) be represented by the cycle z and let C = M be a compact subset
which supports the cycle z.

First suppose pe M — C, so that {z} is in the image of the homomorphism
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H, (M — p) » H,(M). Then by the exact sequence of the pair (M, M — p) it
follows that k ({z}) =

If pe C, then select a point g with ge M — C. Such a point must exist,
since C is compact and M is not. By Lemma 6.4 there is a homeomorphism
h: M - M, homotopic to the identity, with h(p) = ¢. The restriction of h will
then yield a homeomorphism from M — pto M — g.

From the commutativity of the diagram

H,(M) —=— H(M,M — p)

H, (M) —*— H,M,M — g)

and the fact that k,({z}) = O we conclude that k({z}) = 0.

Now let {z} be an arbitrary homology class as above and cover the com-
pact set C with a finite number of coordinate neighborhoods U,, ..., U,
where each U; is homeomorphic to an open disk in R" Denoting V; =
\ U, Ui, we will show that {z} = 0 by proving that {z} is a boundary in V,,
that is, H,(¥) = 0.

The argument proceeds by induction on k. For k = 1 the result follows
from Lemma 6.1. So suppose H,(V,,) = 0 and consider the Mayer- Vietoris
sequence for the union V,, w U, ., = V,.;:

H,(V,) ® H,(U,,+,) > H,(V,y1) > H,_ (V0 Uy yy)
_)Hn—l(Vm)®Hn—1(Um+1)'

Now the first term is zero by the inductive hypothesis and Lemma 6.1 and
H, (U,+;) = Osince U,,, is homeomorphic to an open disk. Thus, to prove
that H,(V,,,,) = 0 it is sufficient to show that the homomorphism

i*: Hn—l(Vm N Um+1) - Hn—l(Vm)

is a monomorphism.

So suppose that i () = 0. Then there exist elements '€ H,(U,,,,Va N
Un.i) and " e H,(V,,, V,, n U, .,) such that A, (") = = A,(B"), where A,
and A, are the respective connecting homomorphlsms

Consider the following diagram:

H (Vm’ meUm+1) s H( m+1>s |4 r\lJm+1 —’ H M M- p)

Rl

A, J

Hn—I(an Um+1) — Hn(Um+19 me Um+1) —P*} Hn(Um+1’ Um+1 _p)

Az

Setting 8 = i,.(B’) — i,.(B"), observe that A(B) = 0, where A is the connect-
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ing homomorphism of the pair (V,,,, ¥, © U,.,). Thus, there exists an a €
Hn(Vm+1) WIth ]*(a) = ﬁ

Let pe U,,, — V,,» U,.,. Then by the remarks at the beginning of the
proof, i (@) = 0. Thus

0 = L(j4@) = Ly(B) = Llira(B) — i2(B")
= Lisn(B) = Lin(B).

Now since p ¢ V,,, Ii,, factors through H (M — p, M — p) = 0,50 [,i5.(f") =
0. Hence, I,i,,(f’) = 0. This implies that j.(f') = 0.

It follows from Lemma 6.3 that §” must be zero, hence f =0 and i, is a
monomorphism. Therefore, H,(V,,.,) = 0 and we have completed the induc-
tive step. O

6.6 Corollary. Let M be a closed connected n-manifold. If ze H, (M) and p e
M such that

“H,(M) - H,(M,M — p)

i

hasi,.(z) = 0, thenz = 0.

Proof. Since i,(z) =0, there must be an element z' € H,(M — p) with z
being the image of z’. However, M — p is not compact, so by Theorem 6.5
H,(M — p) = 0. Thus, z’ and also z must be zero. O

6.7 Corollary. If M is a connected n-manifold without boundary, then either

(i) H(M)=0,or
(ii) H(M) ~ Z, and for every pe M the homomorphism i,: H,(M)—
H,(M,M — p)is an isomorphism.

Proof. From Corollary 6.6 we have that i,, is a monomorphism. Since
H,(M,M — p) = Z, it follows that either H,(M) = 0 or H,(M) ~ Z. So sup-
pose H,(M) # 0 and let z € H, (M) and we H,(M, M — p) be generators for
the respective infinite cyclic groups. Then i,.(z) = £ m-w for some positive
integer m. We must show that m = 1.

Note that the same proof as for Theorem 6.5 may be given to show that for
any abelian group G, H,(M; G) = O for M a connected noncompact manifold
without boundary. Then consider the diagram

HM)® Z,, 22 H MM - p)® Z,

2, | mono ay | mono

H(M;Z,) —e HMM—p,Z,)

mono
where the vertical monomorphisms come from the universal coefficient theo-

rem. The commutativity of the square implies that i,, ® id is a monomor-
phism. But
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(xRN =i ()@®1=dmw®l=+w®m=0,
so that z® 1 = 0. This only happens if m = 1. Therefore, i, is an isomor-
phism. |
Let M be an n-manifold without boundary. For each p € M let
I,=HMM-p=xZ

and for coefficients in Z,

1(Z,)=H (MM —p, Z,)x Z,.
Define the set
g = Z T,
peM

We want to introduce a topology on the set 7. To do so requires the
notion of a proper n-ball. A proper n-ball in M is an open set ¥V < M such
that there exists a homeomorphism of D" onto V taking $"~! onto V — V. For
example, the interior of the region shown in Figure 6.11a fails to be a proper
n-ball while the interior of the region in Figure 6.11b is a proper n-ball.

EXERCISE 4. Show that if M is an n-manifold without boundary, then the collection of
all proper n-balls in M forms a basis for the topology on M.
Now if V' is a proper n-ball in M and p € V, then there is an isomorphism
Jpi H(M,M = V) S T,.
As a basis for the topology on 7 we take the sets
Uy = {in@ipe V}

as V ranges over all proper n-balls of M and « ranges over all elements for
H,(M,M — V). For example, the choice of a generator for H,(M,M — V)
dictates, via the isomorphisms j ., a generator for each T, and these selected
generators form a sheet in 7 which is homeomorphic to V. Since this may be

(a) (b)
Figure 6.11
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done for either generator of H,(M, M — V) we see that the generators of the
T, form two disjoint sheets each homeomorphic to V.

More generally, if 1: 7 — M is the natural projection, it is evident that 7 is
a local homeomorphism. Each component of 7 is a covering space of M
with either one or two sheets. In particular the generators of all the T, form
either a double covering of M or two distinct simple coverings. The restric-
tion of 7 to this subset of 7 is the orientation double covering of M. In the case
that there are two distinct simple coverings we say that M is orientable. An
orientation of M is a map s: M - 7 with 7o s = identity on M and s(p) a
generator of T, for each pe M. Of course, an orientable manifold has two
possible orientations.

EXERCISE 5. Let B be the Mobius band so that M = B — ¢B is a 2-manifold without
boundary. Prove that M is not orientable by showing that the domain of its orienta-
tion double covering is homeomorphic to the annulus St x (0, 1).

EXERCISE 6. Let M be an n-manifold without boundary and let M be the domain of its
orientation double covering. Then show that M is an orientable n-manifold.

Following the same procedure for the groups T,(Z,), the generators form
a simple covering of M so that there always exists a unique Z,-orientation.

If M is a closed n-manifold, a fundamental class on M is an element z €
H,(M) such that

p*
has i,.(z) a generator of T, for each pe M. A cycle representing z is a funda-
mental cycle.

6.8 Lemma. Let M be a closed n-manifold and U be an open subset of M. If
an element x € H,(M, U) has j.(x) = 0 for allpe M — U, where
Jp Hy(M, U) > T,

then x = 0.

Proof. First suppose that M — U is contained in some coordinate neighbor-
hood W. Then consider the commutative diagram

H (W, WU —2,  H(W,W - p)

HM,U) —2 HMM-p=T,

p

where the vertical homomorphisms are excision isomorphisms. For each p e
M—-U=W—WnU),itfollows that j,.(x) = 0 if and only if h,, kills the
preimage of x. Then by Lemma 6.3 the preimage of x must be zero, which
implies that x = 0.
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For the general case, since M — U is compact, we express M — U as the
union of a finite number of compact sets, each contained in a coordinate
neighborhood. We proceed by induction on the number k of such compact
sets. In the previous paragraph we have proved the result for k = 1. For the
inductive step we use the Mayer—Vietoris sequence

H, (MUOU)Y>HMUNU)>H,M,U)®H,(M,U"),

where U’ and U” are open sets in M, and the fact that H, (M, U’ v U") =0,
which follows by Lemmas 6.1 and 6.5 and the exact sequence of a pair.  []

6.9 Lemma. Let M be a closed orientable n-manifold with orientation s: M —
F . Then there exists a class z € H,(M) such that i,.(z) = s(p)e T, for all p €
M.

Proof. From our previous observations we know that for each p there exists
a proper n-ball ¥, about p and an element x, € H,(M, M — I7p) such that if
g€V, ju(x,) = s(q). The technique then is to piece together such proper
n-balls, using a Mayer—Vietoris sequence and the compactness of M, to con-
struct the desired global homology class.

Since M is compact, there is a finite collection V4, ..., ¥ of proper n-balls
which cover M. Suppose that there is an element

zpe HM,M — (V0 U V,))
such that
Jo(2m) = 5(q)
forallge V; u--- U V,. Then consider the relative Mayer—Vietoris sequence
H,M,M — (VU U V,,))
> HMM— V0 UV,)® H(MM —V,,,)
>H MM — ¥, 0 0V,)" Vo)

Starting with the element Zpy — Xp4y In the direct sum, let w be its 1mage
in H,(M,M — v, U V,) "\ V,.,). This implies that for all ge (V, u--- U
Vi) O Vigirs JW ) 0 Now by Lemma 6.8 it follows that w = 0.

Let z,,, € H(M,M — (V, U V,,1)) be the element which is mapped
into z,, — x,,,,; and note that jq,‘( Zmey) =S(q)forallge V,u---UV,,,,. This
completes the inductive step and the desired class z is z,. O

All of these results are summarized in the following theorem expressing the
precise relation between orientation and fundamental class:

6.10 Theorem. If M is a closed connected orientable n-manifold with orienta-
tion s: M — 7, then there is a unique fundamental class z € H (M) such that
ipdz) = s(p) for each p e M.
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Proof. This follows immediately from the previous lemmas. From Lemma 6.9
we have the existence of such a fundamental class z. If z’ is another such class,
then foreachpe M

ip(z —2)=s(p) —s(p) =0
so that z — z' = 0 by Corollary 6.6. This proves uniqueness. ]

ExXEeRrcisE 7. Let M, be a closed orientable n,-manifold and M, be a closed orientable
n,-manifold. Then show M; x M, is a closed orientable (n, + n,)-manifold.

Our procedure for proving the Poincaré duality theorem follows the style
of Milnor [1957] by first establishing a form of the Thom isomorphism. So
for the present, we assume that M is a closed, orientable n-manifold with an
orientation s: M — 7. Then by the above exercise, M x M is a compact,
orientable 2n-manifold. Define maps n,, n,: M x M — M by projection onto
the first or second coordinate, and for any pe M

lpyrpyM—->Mx M
by I,(x) = (p, x), r,(x) = (x, p). Finally, denote by
AM->MxM
the diagonal A(x) = (x, x) and note that
n; oA =m, oA = identity on M.

6.11 Lemma. Let V be a proper n-ball in M with p € V corresponding to the
origin in D". There is a homeomorphism

:n ' V)=V x M - a7 {(V)
such that
(i) m, =mn,00onall of 7 (V);

(i) 0cA=r,onV;
(iii) (my 0 00 1,),(s(q)) = s(p)forallge V.

Note: This states that V' x M may be deformed in such a way that the first
coordinate is unchanged (i), and the diagonal over V is transformed into the
level set V x {p} (ii). Furthermore this is done in such a way as to preserve
the orientation in the sense that the composition

Lox
HM,M —q) > H,(qg x M,q x (M — g))
0*
= H(q x M,q x (M — p))

- H,(M,M — p)
takes s(q) into s(p) for all g in V.
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x,y)
T -—
'1 (x,x)
n s
D" $0 )
L
Ry
D" ~3D"
Figure 6.12
Proof. Denote by
h:V->D"

the homeomorphism taking p into the origin. Define a homeomorphism
4. (D" — 0D") x D" - (D" — 0D") x D"
as follows: for x e D" — 0D", y € 0D", map the entire segment from (x, x) to

(x,y) linearly into the segment from (x, 0) to (x, y) (Figure 6.12).
Now define

@.q) = {(q,q’) il q¢v
’ (@ h™'(A(h(@),h(q")))  for q'eV.
For fixed g € V, as ¢’ € V approaches dV, 6(q,q') approaches (g, g"). It follows
that 6 is a well-defined homeomorphism with the desired properties. O
For any open set U < M denote by U* the pair
U* =(r 3 U),n {(U) — AM)) = (U x M,U x M — A(M))
and in particular

M* =M x M,M x M — A(M)).

6.12 Lemma

(i) H{M*)=0fori <n;
(i) Ho(M)=~H, (M) under the homomorphism sending the O-chain represented
by pe M into the relative class represented by I,.(s(p)), where

Lu: H(M,M — p) > H,(M x M,M x M — A(M)).
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Proof. First consider the statement of the lemma with a proper n-ball V
replacing M. The homeomorphism 8 of Lemma 6.11 induces

O: V=V x M,V x M= AM)) >V x (M,M — p),

since A(V) is taken into ¥ x p. Therefore, the induced homomorphism on the
relative homology groups is an isomorphism. Applying the Kiinneth formula
of Theorem 5.5 to V x (M, M — p), Statement (i) follows for V *

Consider the composition

H(V,V — 9 SH(V x M,V x M — A(M))
LH(V x (MM — p))S H(M, M — p).
4
Ho(V) ® H,(M,M — p)

From Lemma 6.11, Part (iii) we know that n,.0,/,.(s(q)) = s(p). The vertical
isomorphism follows from the Kiinneth formula, where Ho(V) ® H (M, M —p)
is the infinite cyclic group generated by {g} ® s(p). These two isomorphisms
imply that Part (ii) holds for V replacing M.

Finally, we again use an inductive procedure to extend to the general case.
Suppose that U and V are open sets in M such that the lemma holds for U,
V,and U n V. There is a diagram of Mayer—Vietoris sequences

= Ho(UnV) - HyU)@Ho(V) - Ho(UuV) -0 -

I .

= H(UnV)) > H(U") @ H (V™) - H(UuV)*) > H_(UnV))—-,

where the vertical homomorphisms are those described in Part (ii). Note that
if p and g are in the same path component of U, then it follows from Lemma
6.11, Part (iii) that [,.(s(p)) = l,.(s(q)). Applying the five lemma (Exercise 4,
Chapter 2) completes the inductive step and, since M is compact, the proof is
complete. O

We are now ready to prove the following important theorem which has
many applications in algebraic topology.

6.13 Theorem (Thom Isomorphism Theorem). For a compact oriented
n-manifold M without boundary, there is a cohomology class U e H'(M*)
such that for any coefficient group G the homomorphism

®*: H*(M; G) » H"**(M *; G)
given by
O*x) = U un¥(x)
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is an isomorphism. Here the cup product has the form
HYM x M;G)® H'(M x MM x M — A(M); Z)
- H"" (M x M,M x M — A(M); G).

Note: The class U e H*(M*) is called the Thom class of the topological
manifold M.

Proof. We prove the theorem for G = Z. The general case follows by
applying the universal coefficient theorem.

Since H(M ™) = 0 for i < n, it follows from the universal coefficient theo-
rem that H(M*)=0 for i<n and H"(M*) ~ Hom(H,(M*),Z). From
Lemma 6.12 we have a natural isomorphism of H,(M*) with Hy(M), hence
also of Hom(H, (M *),Z) with Hom(Hy(M), Z). Then we define U € H"(M*)
to be the class corresponding to the augmentation homomorphism

HoM)—-Z

under these isomorphisms. In particular then it follows from Lemma 6.12
that for all p e M the Kronecker index

U, Ln(s(p)) = 1.

For any open set V¥ = M we denote by U, € H*(V *) the restriction of the
Thom class U. There is a cap product

H'(V x M,V x M — AM)® Ho(V x M,V x M ~ AM)) = H,_(V x M)

sending U, ® « into U, N a. For any « € H,(V *) define ®,(2) to be the ele-
ment of H,_, (V) given by ®,(2) = n,,(U, n«). Thus

O H (V) HJV)
is a natural homomorphism of degree —n between graded groups.

Now restrict to the case of V being a proper n-ball. Under the isomorphism
of Lemma 6.11

0% H"(V x (M,M — p)) » H"(V ™),

the element 6* "' (U,) may be identified via the Kiinneth formula with 1 ® €
H°(V)® H"(M,M — p), where 7 is a generator of the infinite cyclic group
H'M,M — p).

By the naturality of the cap product

(U, N o) =m0 0,(0%0*(U,)) n )
= 1,.(0* " (U,) A 6,(x)).
Soifwe H,(M,M — p)is a generator with {y,w)> = 1, then
m(U, na) = B,
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where f ® w corresponds to « under the isomorphisms
H_o(V) ® H,(M, M = p) 5> H(V x (M, M — p)) & H,(V ).

Therefore, @,: H(V *) - H,_,(V) is an isomorphism for each k.

If V, €V, are open sets in M, the restriction of U,, is U, . This fact, to-
gether with naturality and the Mayer—Vietoris sequence, may be used in the
manner of Lemma 6.12 to extend the result inductively to an isomorphism

®,: H(M™) > H,_,(M).

By returning to the chain level we can define the adjoint of ®,; this yields
a homomorphism

@* HI(M) > H*"(M ).

Applying the universal coefficient theorem, we see that ®* is also an isomor-
phism. Finally note that

(D¥(x), yp = <X, D, ()
= {x, i (Uny))
=i, Uny)
= U unt(x),y»
for any x and y, so that ®*(x) = U u n¥(x). O

EXAMPLE. As an aid to understanding this important theorem, consider
the following simple example: Let M = S* so that M x M is the two-
dimensional torus. Recall from Chapter 5 the determination of the coho-
mology ring structure in M x M. As before we denote generating 1-cycles in
M x M by & and B, and their dual cocyles by « and 8 (Figure 6.13). It is not
difficult to see that M x M — AM has the homotopy type of S*, as is demon-
strated in the following deformation (Figure 6.14).

Now given an orientation for M = S', there is a generator @ € H,(M) such
that i,.(a@) = s(p) for all p e M. Thus, from the commutative diagram

VAR

) I, (M)
L) i

Figure 6.13
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Figure 6.14

M) —% H/(M,M —p)

(
llp* llp*

H(M x M) ——  H,(M*)

H,

we see that [,.(s(p)) = [pui (@) = i,l,.(@). With a possible change in sign re-
sulting from the choice of orientation, we have [,.(a) = &. Thus, the Thom
class U € H'(M*) will have the property that

1= <Ulus(p)) = U, i @) = G*U, &).
From the exact cohomology sequence of the pair M *,
HYM*) 5 H M x MyD HY (M x M — AM),
it is not difficult to argue that i* is a monomorphism and j* is an epimor-
phism. Furthermore, H'(M x M) is free abelian with basis elements « and f,
and the kernel of j* is infinite cycle generated by @ — f. This uniquely deter-
mines the Thom class U corresponding to the given orientation. Changing

the orientation of M changes the sign of U.
Finally consider the Thom homomorphism

@* H'(M) - HX(M*).
If a is the generator dual to @, ®*(a) = U u n¥(a). Now in H'(M x M) we
have
(w¥(a), 3 + nB) = (a,m,dm3 + nB)> = m,
so that n*(a) = «. Using the isomorphism H2(M*) 5 H*(M x M), it follows
that
¥O¥a) = i*({Uuvun¥a)=YUua) =i*U)va

=(a—-pua=—fua,



164 Homology Theory

which is a generator of H*(M x M). Thus, ®*(a) is a generator of H*(M*)
and ®* is an isomorphism.

At this point we need another very basic property of topological manifolds.

6.14 Theorem. If M is a closed topological n-manifold, there exists a topologi-
cal embedding of M in R* for some large value of k. Furthermore, under this
embedding there exists an open set U about M such that M is a retract of U,
that is, there exists a map r: U — M such that r|,, is the identity.

Proof. See Appendix II. O

6.15 Lemma. For M a closed manifold, there exists a neighborhood N of A(M)
in M x M such that n||y and =,|y are homotopic as maps from N to M.

Proof. Applying Theorem 6.14 we cmbed M in R* and let U be a neighbor-
hood of M which retracts onto M. Since M is compact there exists an ¢ > 0
such that for any points x, y € M having distance (in R*) between x and y less
than ¢, the segment from x to y lies in U. It is evident then that any two maps
into M with the distance between corresponding points less than ¢ are homo-
topic in U via the obvious homotopy. Applying the retraction r moves the
homotopy into M.

Now the projection maps n; and 7, coincide on A(M) in M x M. Again
using compactness, there must exist a neighborhood N of A(M) in M x M
such that the distance between n,|y and n,|y is less than ¢. It follows then
that these restrictions are homotopic in M. O

6.16 Lemma. Define t: M x M - M x M by t(x,y) = (y,x) and note that t
induces a map of pairst: M>* - M*_ Then for x e H¥M>;G), t*(x) = (— 1)"x.
Proof. First let V be a proper n-ball in M and consider the diagram

H'M x M|M x M — AM)) —=— H"(M x M,M x M — A(M))

i* i

H'(V X V,V x V—AV) ——s HW x V,V x V —A(V)),

where the vertical homomorphisms are induced by the inclusion map. Note
that H*(V x V,V x V — A(V)) is infinite cyclic since (V x V,V x V — A(V))
has the homotopy type of (D", §"~!). Furthermore, i*(U) is a generator of this
group and t*(i*U) = (— 1)"*(U). Thus, we conclude that

t*(U) = (- 1)"U.

Now let N be a closed neighborhood of A(M) satisfying the requirement of
Lemma 6.15. We may further require that N be invariant under t. Then the
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diagram
Uv

H¥M) —2 H¥M x M) —=— H¥M>)

(7'-'1|.\')*\ / /cxcision

U

H¥N) 22 H*(N,N — A(M))

is commutative where the composition across the top is ®*. Recalling that
n, = m, ot we have

PH@*(x) = 14U vl (x)) = t*(j(U) v (m,{8)*()
= **(U) U (2| 6)*(x) = (= 1T*HU) © (n2|3)*(x)
which by Lemma 6.15
= (= 1)Y*U) w (7, [p)*x) = (= D)THP¥(x)).

Since j* and ®* are isomorphisms, the result follows. O

6.17 Proposition. If M is a closed n-manifold, then H (M) is finitely generated.

Proof. Using Theorem 6.14 we embed M in a high-dimensional euclidean
space R™ so that some open set N about M in R™ admits a retraction onto
M, r: N - M. Choose a large m-simplex s™ in R™ so that M is contained in
its interior. By the results of Appendix I there exists an integer k so that mesh
Sd*s™ is less than the distance from M to R™ — N.

Let K be the union of all simplices in Sd*s™ whose closures intersect M.
Then K is a finite CW complex, M = K = N and the retraction r restricts to
aretractionr: K - M.

By Proposition 2.23 H_(K) is finitely generated and by Corollary 1.12
H,(M) is isomorphic to a direct summand of H,(K); hence, H (M) is finitely
generated. Ol

We are now ready to prove the main theorem of this chapter.

6.18 Poincaré Duality Theorem. For M a compact connected orientable n-
manifold without boundary, with orientation s: M — 7 and associated funda-
mental class z, the homomorphism

D: H(M;G) -» H,_(M; G),
given by D(x) = x N z, is an isomorphism for each k.
Proof. Let Z be a cycle in S,(M) representing z. Then there is a homomor-
phism of chain complexes

D,: S5(M;G) - 5,-4(M; G)
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given by cap product with Z. Note that D, commutes with coboundary and
boundary operators up to sign and induces D on cohomology and homology.

Now let R be a ring with unit, x, y € H*(M; R) and «, § € H,(M;R). Then
there are the elements

ax fe H(M x M;R) and x x y=n¥(x)unai(y)e H¥(M x M;R).
If U e H"(M*) is the Thom class of M, denote by U the class i*(U), where
i*: H"(M*) - H"(M x M)

is induced by inclusion. Let ¢ be a chosen generator for Hy(M).
The homomorphism i,: H,(M x M)— H,(M*) takes ¢ x z into I,.(s(p)).
Thus

(6.19) (—1)U0,z x ¢> =<U,¢e x 2)
= (i*U), e x z)
= (U, L.(s(p))
=1.
If xe H'(M;R) and y € H*(M; R), then we claim that
(6.20) Uux xy)=(=1y0u(y x x).

In order to give this meaning we must view U as an element of
H"(M x M;R). This is done by using the coefficient homomorphism Z —» R
given by taking 1 into the unit of the ring R.

Then in the diagram

H'(M*;R)® H""*(M x M;R) —— H""*(M*;R)

*®id %

H"(M x M:R)® H™*(M x M;R) —2— H""*(M x M;R),

we have
(—=1)'Uu(xxy =t¥Uulx xy)
=t¥(U) ut¥(x x y)
=(—1)"*"U u(y x x).
Therefore

~

Uux xy)=i¥U)uvid(x x y) =i*U u(x x y))
= (1)U Uy x x) = (-1 Tu(y = %)

which proves Equation (6.20).
Finally, for x e H*(M; R) and o € H,(M; R) we have
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O,D(x) x 0> =<U,(x"z) x a)
=(0,(x x )n(z x %))
=(x x YuU,(z x ).

Then by Equation (6.20)
CO,D(x) x a) =<(1 x x)u U,z x 2>
=<0, x x)n(z x 2))
=(=1y%U,z x {x,a>- €.

It follows from Equation (6.19) that this last expression is equal to
(= D)™ ¢x, a>- 1. We summarize these statements in the following impor-
tant equation:

(6.21) (x,a) = (— 1" 0T, D(x) x ad.

For the special case R = Z,, where p is a prime, the universal coefficient
theorem becomes an isomorphism,

H¥M;Z,) ~ Hom, (H(M;Z,)), Z,).

Applying this to the above equation we see that x # 0 implies D(x) # 0.
Therefore
D: H¥M; Z,) » H(M; Z,)

is a monomorphism. By Proposition 6.17 these are finite-dimensional vec-
tor spaces, so since their dimensions must be the same, D must be an
isomorphism.

To extend this result to more general coefficient groups we use the method
of “algebraic mapping cylinders” [Eilenberg and Steenrod, 1952]. Recall that
D, is a homomorphism

Dy, Sk(M) = Sp-i(M)

with D, ¢ 6 = @ o D,. Define
Cook =S M@ S, (M)  or  C,=S""YM)® S,(M),
and a boundary operator
0: Cp > Cpy = S HMY® S,,_ (M),
by
(2, B) = (— 0,88 + D 4(%)).
Then we check that
C o O(a, B) = 0(— 52, 0B + D 4())
= (302, 8(08 + D,(®)) — D,d(x))
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= (0,éD,() — D,8())
=0.

Hence, {C,,,0} defines a chain complex C.
There is a short exact sequence

0 > S, (M) =2 ¢, 2 gnmti gy 5 0

that determines a short exact sequence of chain complexes (the second homo-
morphism will be a chain map up to sign only, but this will be sufficient for
our purposes). Therefore, we have a long exact sequence of homology groups.
What is the connecting homomorphism?

Let y € S"™*1(M) with dy = 0. Pick the element (y,0) € C,, that projects
onto y. Then

0(3,0) = (= 3y, Dy(y)) = (0, Dy(y))
and the element in S,,_,(M) having this as its image is D,(y). Thus the con-
necting homomorphism for the sequence is D and the sequence has the form

co > HmMY B HL (M) - H () » H™™ (M) 3 H,_ (M) > -+ .

Now we may identify S¥(M; Z,) with S§(M) ® Z,,, so that for each prime p
we have a long exact sequence

o H MM Z,) 2 Hy(M5 Z,) > H(C5 Z,) » H " (MG Z,) -

In the sequence, D is an isomorphism wherever it occurs. Hence, H,(C; Z,) =
0 for all integers m and primes p. But since H,(C) is finitely generated, it
follows from the universal coefficient theorem that H,,(C) = O for all m. Thus,
the first sequence shows D to be an isomorphism for integral coefficients. This
same technique shows D to be an isomorphism for G any finitely generated
abelian group.

Finally, to extend to the general case, the fact that H (M) is finitely gener-
ated implies that H,(M;G) is the direct limit of {H (M;G')} where G’ ranges
over the finitely generated subgroups of G. Since D commutes with coefficient
homomorphisms, we conclude that D is an isomorphism for general abelian
groups G. O

Note: The essence of the proof is the relationship between the Thom class
and the duality homomorphism. Specifically, if x is a cohomology class and
o is an homology class, the Kronecker index of x on a is, up to sign, the same
as the Kronecker index of the “restricted” Thom class U on the external
homology product D(x) x a.

Since all manifolds are orientable when the coefficient group is Z,, we may
duplicate the previous proof to establish:
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6.22 Theorem. For M a closed connected n-manifold with Z,-fundamental
class z, € H,(M; Z,), the homomorphism

D: Hk(M;Zz) - H,_(M; Z,),

given by D(x) = x n z,, is an isomorphism. O

We now turn to the relative case, that is, the duality theorem for a manifold
with boundary. Therefore, let M be a compact manifold with boundary M.
The structures that were defined previously, the local homology groups T,
and the orientation covering 4 with projection 7, may still be defined for
points pe M — dM. We define (M, M) to be orientable if there exists a con-
tinuous map s: M — dM — J with 7 o s = identity and s(p) a generator of T,
for each pin M — oM.

One of the most useful tools in studying manifolds with boundary is the
“collaring theorem,” which states that there is a neighborhood of the bound-
ary which resembles a collar, that is, it is homeomorphic to the cartesian
product of the boundary and an interval. In its topological form it is due to
Brown [1962].

6.23 Topological Collaring Theorem. If M is a topological manifold with
boundary ¢ M, then there exists a neighborhood W of éM in M such that W is
homeomorphic to M x [0,1] in such a way that ¢M corresponds naturally
with M x Q.

Proof. See Appendix I1. O

If M is a manifold with boundary, define the “double” of M to be the
manifold M formed by identifying two copies of M along ¢M.

EXERCISE 8. Show that (M, 3M) is orientable if and only if M is orientable.

Exercise 9. Show that if (M, M) is orientable, then éM is an orientable manifold
without boundary. Is the converse true?

6.24 Theorem. If (M,0M) is a compact connected orientable n-manifold with
orientation s, then there exists a unique fundamental class z € H,(M,0M)
such that for each p ¢ M — M, j,.(z) = s(p). Furthermore, if A: H,(M, M) —
H,_,(¢M) is the connecting homomorphism, then A(z) is a fundamental class
of ¢M, that is, it restricts to a fundamental class on each component of M.

Proof. Since M is orientable, there exists a fundamental class 2 € H,(M) such
that j..(2) = $(p) for all pe M. Then we define z to be the image of Z under
the composition

H, (M) - H(M,M — (M — 3M)) ~ H,(M, M),
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Figure 6.15

where the second homomorphism is the inverse of an excision isomorphism.
This gives the existence of the desired fundamental class z.

Let D be a proper (n — 1)-ball in M. If W is a collar for dM in M (Theo-
rem 6.23), then under the homeomorphism W ~ éM x I there is an n-cell E
corresponding to D x I (Figure 6.15). For any point p in the interior, D?, of
the (n — 1)-cell D in M we have the following diagram:

H, (M, M) H(M,M — E° - H,(E, 3F)
A A x |A

H,((eM) —2— H, (M — E°) “ H,_\(¢E)
jl’a =

H, (M,éM — p)> H, (M — E%(M — E°) — p) & H, ,(3E,0E — p)

in which each rectangle commutes and the horizontal isomorphisms follow
by excision.
If g is a point in E°, the factorization

H,(M,oM) ——»H(MM——q

N

H/(M,M — E°

and the fact that j.(z) is the generator s(q) imply that i_(z) is a generator for
the infinite cyclic group H,(M, M — E°). Thus, there exists a generator z' for
H,(E, 0E) such that k(z') = i (2).

From the diagram k, A(z’) = i, A(z) and hence the images of A(z) and A(z')
in the infinite cyclic group H,_,(M — E° (M — E°) — p) must coincide. Since
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the image of A(z') is a generator, so is the image of A(z). Therefore, j,.(A(z))
is a generator of H,_,(6M, M — p) and A(z) must be a fundamental class for
M.

To prove uniqueness, note first that if W is a collar for oM, then both M
and M — M are homotopy equivalent to M — W°. Thus

H,M)~ H,M —- M) =0
by Theorem 6.5. So suppose z and w are fundamental classes in H,(M, M)
corresponding to the orientation s. Since A(z) and A(w) are fundamental
classes in H,_,(6M) corresponding to the orientation induced by s on éM, the
restrictions of A(z) and A(w) to each component of dM must agree by Theo-
rem 6.10. Thus, z — w is in the kernel of A. By exactness and the fact that
H, (M) = 0 it follows that z = w. O

6.25 Poincaré—Lefschetz Duality Theorem. Let (M,dM) be a compact ori-
entable n-manifold with fundamental class z € H,(M,0M). Then the duality
maps

D: HY(M,oM) - H,_(M) and D: HY(M) - H,_.(M,3M)
given by taking the cap product with z are both isomorphisms.
Proof. In M let M, and M, denote the two copies of M (Figure 6.16). There
exists a two-sided collaring N of 8M in M. That is, N is homeomorphic to
¢M x I, where [ = [—1, 1], with M corresponding to @M x {0}. Note that

&N is homeomorphic to M x .
Fori = 1, 2 consider the following diagram:

D;
D =n: lw‘.m / H, (M, M,., — N°)

H, (M, M) 25 H, (M, U N,a(M; U N)j

where D; is defined to make the triangle commute. Since j is the inclusion

Figure 6.16
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map, the rectangle commutes by the naturality of the cap product; that is,
RU*X)nz) = x N j(2)

On the other hand, if ¢ € H,(1, dI) is a generator, and ¢ is the element of
H°(I) having ¢ n 6 = o, then we have the following diagram:

H*oM) —— HYoM x I) = H"(N)\
D

x NAz ~n{Az x a) Hn—k(MaM . NO)
Hy1(eM) > H, (@M x (1,2]) = H,_(N,aN)
where, once again, D is defined to make the diagram commute. The rectangle
commutes since
(xxen(Azx0o)=(xNAz)x (eno)=(xNAz) X 0.

Note further that since Az is a fundamental class for M, it follows from

Theorem 6.18 that D is an isomorphism.
These homomorphisms may be used to connect the following Mayer—

Vietoris sequences:

> HYM) ——— HYM, UuN)® H*(M, UN)

li) lbl@nz

o~ Hy_ (M) - H,_,(M,M, — N°)® H,_(M,M, — N°)
- H"(N) S

J,—,
= Hy (MM = N%) =,

where D is given by taking the cap product with 2, the fundamental class for
M which is associated with z. It can be checked that each rectangle commutes
up to sign. Since D and D are isomorphisms, it follows by the five lemma
(Exercise 4, Chapter 2) that D; @ D, is an isomorphism. Going back to the
first diagram, the fact that D, is an isomorphism implies that

D: H'(M) - H,_,(M,cM)

is an isomorphism for each k.
Finally, it follows from the diagram

= HYeM) —— HY(M, M) HYM) - -

:JAA: lr\: x| nz

= H,_ (M) —— H, (M) —— H, (M,CM)~— -




6. Manifolds and Poincaré Duality 173

and another application of the five lemma that

D: H*(M,2M) - H,_(M)
is an isomorphism. O
Exercise 10. Suppose M is a compact connected oriented n-manifold with éM =
M, U M,, the disjoint union of two closed (n — 1)-manifolds. If ze H,(M,0M) is a

fundamental class, show that there is a suitably defined cap product which yields an
isomorphism

HM, M) > H, (M, M)
given by capping with z.
In the remainder of this chapter we will give a number of immediate appli-
cations of the Poincaré duality theorem. We make no attempt to be complete

in this sense, because many of the known facts about manifolds are related to
this theorem.

6.26 Lemma. If M is a closed connected oriented n-manifold, then H, (M) is
free abelian.

Proof. Suppose this is not true. Since H,_,(M) is finitely generated, it must
contain a direct summand isomorphic to Z, for some integer p > 1. Thus
HM)~Z and H_(Mx~Z,®A
for some abelian group A. By the universal coefficient theorem
HM;Z,)~ H,(M)® Z,® Tor(H,_1(M), Z,)
~Z,®Z,®Tor(A,Z,)

Now from our previous observations we know that the inclusion map
induces a monomorphism

HM;Z)->HMM-x;Z)x Z,
for any point x € M. This implies the existence of a monomorphism
Z,®Z,®Tor(A,Z,)— Z,,

which is impossible. Thus, H,_, (M) is free abelian. O

It follows immediately from Lemma 6.26 that if M is a closed, connected,
oriented n-manifold,

Ext(H,_,(M),Z2)=0
so that
H"(M) ~ Hom(H,(M), Z),
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which is infinite cycle. If z € H,(M) is the fundamental class corresponding to
the given orientation, define « € H"(M) to be the “dual” of z in the sense that
{a,zy = 1, s0 2 is a generator for H"(M).

For any integer g define a pairing

HIM)® H" {(M)-> Z

by sending x ® y into the integer {(x L y,z). Note that if r- x = 0 in H4(M) for
some integer r # 0, then (r-x)u y = r-(x U y) = 0; hence, x U y = 0 because
H"(M) is infinite cyclic. Similarly x U y = 0 if y has finite order.

On the other hand, suppose that x € HY(M) does not have finite order.
From the universal coefficient theorem the homomorphism

H4(M) — Hom(H,(M), Z),

sending x into the homomorphism w — {x, w), must take x into a nontrivial
homomorphism. Thus, there exists an element w e H (M) with {x,w) # 0.
Furthermore this is a split monomorphism, so that if x generates a direct
summand of H*(M), then there exists an element w € H (M) with {x,w) = 1.
Now by the Poincaré duality theorem there is an element y € H" (M) with
ynz=w. Then
yux,zy ={x,ynzy ={x,wy #0

and so x U y # 0. This completes the proof of the following:

6.27 Proposition. If M is a closed connected oriented n-manifold and A, =
HY(M) is the torsion subgroup, then there is a nonsingular dual pairing

HI(M)/A, @ H" Y (M)/A,_,— Z. O

6.28 Corollary. If ae H*(CP(n)) is a generator, then a* € H**(CP(n)) is a
generator for 1 < k < n.

Proof. CP(n) is an orientable, compact, connected 2n-manifold whose
cohomology is given by
VA formeven, 0<m<2n
H™(CP(n)) = T T
(CP@m) {O otherwise.

We prove the result by induction on n. It is obviously true for n =1, so
suppose it is true for n — 1 > 1, and consider the inclusion
i: CP(n — 1) € CP(n)

of the finite subcomplex which contains all cells of CP(n) except the one cell
of dimension 2n. From the exact sequence of the pair

- — H*(CP(n), CP(n — 1)) » H*(CP(n)) 5 H*(CP(n — 1))
- H?**"Y(CP(n),CP(n — 1)) - -
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we see that i* is an isomorphism for 2k < 2n. Since i*(a) generates
H*(CP(n — 1)), the inductive hypothesis implies that [i*(a)]* generates
H*(CP(n — 1)) for all k < n. Now i* is a ring homomorphism, so a* must
generate H**(CP(n)) for k < n.

Finally, by Proposition 5.27 there is an element b € H?" 2(CP(n)) with
a u b generating H2"(CP(n)). This b must generate H*"~2(CP(n)) so that b =
+a""!. Therefore, au b = +a" is a generator of H**(CP(n)). This completes
the proof. O

Note that this completely describes the structure of the cohomology ring
of CP(n).

6.29 Corollary. H¥(CP(n)) is a polynomial ring over the integers with one
generator a in dimension two, subject to the relation a"** = Q. O

Now let R be a field and M be a closed, connected, oriented manifold. As
we observed previously
H"(M;R) ~ Homg(H,(M;R),R)
and
H"M;R)~ R, H(M;R)x R.

Denote by zg € H,(M; R) a generator as an R-module. Then a slight variation
of the Poincaré duality theorem states that the homomorphism

HY(M;R) - H,_,(M;R),

given by sending a into a M zg, is an isomorphism. The technique of Proposi-
tion 6.27 may now be used to prove the following.

6.30 Proposition. The pairing HY(M;R) ® H""9(M; R) — R given by sending
x ® yinto {x U y,zg> € R is a nonsingular dual pairing. O
6.31 Corollary. If M is a closed, connected n-manifold, then

HYM;Z,) ® H" (M Z,) - Z,
is a nonsingular dual pairing. O
6.32 Corollary. If ae H'(RP(n);,Z,) is a generator, then a* generates

HYRP(n); Z,) for 1 < k < n. Thus, H¥(RP(n); Z,) is a polynomial ring over Z,
with one generator a in dimension one, subject to the relation a"™* = 0. O

Similar arguments may be used to compute the cohomology ring of qua-
ternionic projective space HP(n).
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6.33 Corollary. H*(HP(n)) is a polynomial ring over the integers with one
generator a in dimension four subject to the relation a"™! = 0. O

With these results we may now establish the existence of certain maps
having odd Hopf invariant (see Chapter 5).

6.34 Corollary. There exist maps S* — S, §7 — §*, and S5 — S® having Hopf
invariant 1.

Proof. Let f: S* — S? be the Hopf map of Chapter 2. Recall that S} is homeo-
morphic to CP(2). So if b is a generator of HZ(Sf) and g is a generator of
H*(S}), then b> = +a by Corollary 6.29. Thus, H(f) = + 1. Now the results
of Exercise 8 (i) of Chapter 5 indicate how to alter f, if necessary, to give a
map with Hopf invariant 1.

The cases 7 — §* and S'3 — S® follow by applying the same approach to
the quaternions and the Cayley numbers, respectively. O

In order to develop some further applications we must introduce some
basic facts about bilinear forms. Let V be a real vector space of finite dimen-
sion. A bilinear form

OV xV-R

is nonsingular if ®(x,y) = 0 for all y in V implies x = 0.

Exercise 11. Show that this is equivalent to requiring that ®(x,y) = 0 for all x in V
imply y = 0.

The form @ is symmetric if ®(x,y)= ®(y,x); it is antisymmetric if ®(x,y)=
—®(y,x), for all x and yin V.

ExAMPLE. Let V = R? and denote its points by (x, y). Define
x
D((x, y), (x,y) = det( , y’)'
Xy

This is a nonsingular, antisymmetric bilinear form.

Given any bilinear form ® on V x V we may write ® uniquely as ® =
@ + @, where @' is symmetric and ®” is antisymmetric. To see this we set

'(x,y) = ;[D(x,y) + D(y,x)]
and
D" (x,y) = [P(x,y) — D(y,x)].

Let @ be antisymmetric on V x V. Then ®(x,x) =0forallxe V.If x; e V
has ®(x,,y) # 0 for some y, then obviously there exists an element y, in V
with
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D(x;,y,) =L
Define V; to be the subspace of V given by
V, = {x e V|®(x,x;) = 0 and O(x, y,) = 0}.
This linear subspace may be identified with the kernel of the linear transfor-
mation
f: V- R2

given by 0(x) = (®(x, x,), ®(x, y;)). Note that since 0(x;) = (0,1) and 6(y,) =
(—1,0), the transformation is an epimorphism. Therefore, the dimension of
V, is equal to dimension V — 2. By repeating this process using the subspace
V, to produce a subspace V,, and so forth, we will eventually either exhaust
V or reach a subspace with the property that the product of any pair of its
vectors is zero.

Thus, there is a basis for V of the form

x19y13x29y29"~’xkaykazla""zs

for which ®(x;, y;) = 1 = —®(y;, x;), and any other pair of basis vectors have
product zero.

6.35 Lemma. If ®:V x V - R is nonsingular and antisymmetric, then the
dimension of V is even.

Proof. This follows from the above, since s = 0. 0O

6.36 Corollary. If M is a closed, oriented manifold of dimension 4k + 2, then
7(M)} is even.

Proof. Recall that the Euler characteristic is given by
4k+2 i
AM)= Y (—1)dimH(M;R).
i=0
By the universal coefficient theorem this may also be expressed as the sum
4k+2

(M) = F (= 1) dim Hi(M; R)

Since M is closed and oriented, the Poincaré duality theorem implies
Hi{(M;R) x Hy.,_(M;R) ~ Hom(H**>~{(M; R), R).

Therefore, dim H'(M; R) = dim H**27{(M; R). As a result the entries in the
second sum are paired up, except in the middle dimension, so that

(— 1) dim H(M; R)

i#2k+1

is even.
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Finally note that there is a bilinear form
o: H2k+1(M; R) % H2k+1(M; R) SR

defined by ®(x, y) = {x U y, zg> € R. By Proposition 6.30 this is nonsingular,
and since x and y are both odd dimensional, it is antisymmetric. Thus, by
Lemma 6.35 the dimension of H2**!(M;R) is even and y(M) is even. O

6.37 Corollary. If M is a closed manifold of dimension 2k + 1, then y(M) = 0.

Proof. Since H(M) is a finitely generated abelian group for each i, we may
write
H(M)~ A4,;® B;® C,
where A; is free abelian of rank r;, B; is a direct sum of s; cyclic groups of order
a power of two, and C; is a direct sum of cyclic groups of odd order. Note that
2k+1 )
(M= 3 (=
By the universal coefficient theorem
dim H(M; Z,) = dim(H;(M) ® Z,) + dim(Tor(H;_,(M), Z,))

= (r; + 8) + (i)

Thus
2k+1 ] 2k+1 )
ZO (—1)'dim H{(M; Z,) = ;) (=1'[ri +si +5i-11
2k+1

= _;) (— l)i”i = 1(M).

On the other hand, by the Poincaré duality theorem
H(M;Z,) = H*"'""(M; Z,) ~ Hom(H 1, (M; Z,), Z,)

so that

dim H(M; Z,) = dim Hy;4_{(M; Z,).
Since i and 2k + 1 — i have different parity, these appear in the sum with
opposite signs. Therefore

2k+1 .
x(M) =Y (1) dim H(M;Z,) = 0. 0

i=0

Note: This result is obviously false for even-dimensional manifolds since
x(8%") = 2, x(RP(2n)) = 1, and x(CP(n)) = n + 1. The vanishing of the Euler
characteristic is a useful fact in differential geometry, as is seen in the follow-
ing basic theorem: a closed differentiable manifold M admits a nonzero vec-
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tor field if and only if y(M) = 0. Thus, Corollary 6.37 implies that any odd-
dimensional, closed, differentiable manifold admits a nonzero vector field.
We shall return to this subject in Chapter 7.

Now suppose that ®: V x V — R is symmetric. Then since
O(x + y,x + y) = D(x, x) + 20(x,y) + O(y,y)
or
D(x, y) = H[O(x + y,x + y) — D(x, x) — ©(, )],
it follows that if @ is nontrivial, there exists an x, € V with ®(x,,x;) # 0. We
may as well assume ®(x,,x;) = + 1. Consider the homomorphism

aV-R

given by a(x) = ®(x, x,). This is an epimorphism since a(x,) = +1,s0if V, is
the kernel of «, the dimension of V, is one less than the dimension of V. By
applying the same analysis to V, to give an element x,, and continuing the
process, we produce a basis for ¥V which may be renumbered so as to have the
form Xy, ...y X,y Xptps -« s Xptss Xptstls - - » Xrrstrs Where

1 if 1<i<r
O(x;,x;)=+< —1 if r<i<r+s
0 if r+s<i<r+s+t,

and any other pair has product zero.

EXErcISE 12. Show that the numbers r and s are invariants of the symmetric form @;
that is, that they are independent of the various choices made.

The signature of a symmetric form @ is the integer r — s. If @ is an arbitrary
bilinear form, then we write ® = ® + ®” with ®' symmetric and ®” anti-
symmetric. We then define the signature of @ to be the signature of @',

Let M be a closed, oriented n-manifold. Define the index of M, denoted
7(M), as follows:

(i) ©(M) = 0 if n # 4k for some integer k;
(i) if n = 4k, let T(M) be the signature of the nonsingular symmetric bilinear
form

®: H*(M;R) x H*(M;R) -» R.
ExErcIse 13. Let M be a closed, connected oriented 4k-manifold. Define a bilinear
form
Y: H¥(M;R) x H¥M;R)-> R
by
F(x,y) = {(x YV Yaks Zry € R,
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where (x U y)4, is the 4k-dimensional component of x U y. Then show that the signa-
ture of V¥ is (M)

EXERCISE 14. Let M, and M, be disjoint, closed, connected oriented manifolds.
(a) Show that the manifold M, x M, may be oriented in such a way that
(M, x My) = 1(M,) ©(M;).
(b) If M, and M, have the same dimension, show that
(M, UM,)=1(M,) + 1(M,).

Note that a change in the orientation of a manifold merely changes the
sign of its index. It is evident that the index of CP(2k) is +1, depending on
the choice of orientation. Thus, it follows from the above exercise that there
exist 4k-dimensional manifolds of arbitrary index for all values of k.

The final question we would like to consider is the following: given a closed
topological manifold M, when does there exist a compact manifold W with
M = éW? Of course we must require that W be compact since M is always

the boundary of M x [0, 1). Our first result gives a necessary condition for M
to be such a boundary.

6.38 Theorem. If W is a compact topological manifold with dW = M, then
7(M) is even.

Proof. If the dimension of M is odd, then (M) = 0 by Corollary 6.37. Thus
we assume that the dimension of M is even so that the dimension of W is odd.
Now consider the manifold W x I (see Exercise 15), where I =[0,1]. We
have

CWxD=MxITuWxdl=MxITuWx{0}uW x {1}.

Define U =d(W xI) = W x {1} and V =2a(W x I)— W x {0}. Note
that U and V are open subsets of (W x I)and W, U, and V all have the same
homotopy type, whereas U n V has the homotopy type of M.

The Mayer—Vietoris sequence for U and V becomes

hivy

Hey(2OF x 1) 5 H(M) D HW) @ H(W) S H@W x D),

where each group is finitely generated and zero in dimensions greater than
the dimension of W.
From the exactness we see that

rank(H,(M)) = rank(image h,.,) + rank(image f;),
rank(H, (W) @® H,(W)) = rank(image f;) + rank(image g,),
rank(H,(8(W x I))) = rank(image g;) + rank(image ;).

By multiple cancellations it follows that
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Y. (= 1) rank(H(M)) — 3 (— 1) rank(H,(W) @ H(W))
+3 (= rank(H,(3(W x I))) = 0.

Since d(W x I) is an odd-dimensional, closed manifold, we have
x(@(W x I)) = 0 by Corollary 6.37. Therefore

x(M) =2-3 (= 1) rank H(W) = 2- y(W). O

ExeRrcISE 15. Suppose M, and M, are topological manifolds. Then show that M, x
M, is a topological manifold with

(M, x My)=(6M,) x My UM, x (6M,).

Note that as an immediate consequence of Theorem 6.38 we have many
manifolds which are not boundaries of compact manifolds, for example,
RP(2k) and CP(2k).

A necessary condition for a closed manifold M to bound a compact
oriented manifold is that the index of M be zero. In order to prove this we
will need the following;

6.39 Lemma. Suppose ® is a symmetric, nonsingular bilinear form on a vector
space V of dimension 2n, and {x,,..., X, } is a linearly independent set in V such
that ®(3 a;x;, Y bx;) = 0 for any coefficients a,, ..., a,, by, ..., b,. Then the
signature of ® is zero.

Proof. In the decomposition described previously, it is evident that ¢t must be
zero since @ is nonsingular. We must show that r = s = n. We will prove
inductively that r > n; a similar argument establishes s > n, from which the
conclusion follows.

For n = 1, there exists an element y, in V with ®(x,, y,) # 0. Then

O(y, +axy, y, +ax,) = Oy, y,) + 2a®(xy,y,)
so by choosing

_ 1 —®(y,,y,)
2(1)("1,)71)

we have ®(y, + ax,,y, +ax;)=landr>1=n
Now suppose the assertion is true for vector spaces of dimension 2(n — 1).
Define a homomorphism

0.V-R"

by O(z) = (®(x,,2),..., D(x,,z)). If @ is not an epimorphism, then the dimen-
sion of the kernel of ® is >n + 1. On the other hand, we may extend the
linearly independent set to a basis {x,...,X,,®,,...,®,} for V and define

Q:V-R"
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by O'(z) = (®(wy, 2),..., P(w,, z)). The dimension of the kernel of @ is >n;
hence

ker @ nker @ # 0.

But this cannot happen since ® is nonsingular, so ® must be an epimor-
phism.

Let y, € ®@7'(1,0,...,0). As before, there exists a real number a with
®(y, + ax;,y, + ax,;) = 1. Now define

¥: V- R?
by ¥(z) = (®(x,2),®(y,,2)) and note that ¥ is an epimorphism. If V' is
the kernel of W, then the restriction of ® to V' is a nonsingular form and
{x5,...,X,} is a linearly independent set in V' satisfying the hypothesis. Thus,

by the inductive hypothesis there exist vectors q,, ..., g, in V' with ®(q;,q;) =
d;;. The collection y, + ax,, q,, ..., q, then shows that r > n. O

6.40 Theorem. If M is a compact oriented (4n + 1)-manifold with boundary,
then the index of OM is zero.

Proof. Denote by ® the symmetric nonsingular bilinear form on H?"(8M; R).
We will show that the signature of ® is zero by proving that the image of

j* H*(M;R) —» H*(0M; R)

is a subspace of half the dimension of H?"(8M; R) on which ® is identically
zero, where j: @M — M is the inclusion.

Let zge Hy,((M,0M;R) be a fundamental class and take Azge
H,,(cM;R) to be the fundamental class given by the image of zy under the
connecting homomorphism, If j*(a) and j*(f) are two elements of H2"(0M; R)
in the image of j*, then

(@), J*(B)) = {j*@) v j*(B), Aza)
= (jHav ), Azg)
=< aup, jiBzgy
=0.

So @ is identically zero on the image of j*.
Consider the commutative diagram

H™M;R) ——— H™@3M;R)

~ | D" x| D

Hyp(M,0M;R) —2— H,,(?M;R)

as in the proof of Theorem 6.25, where D and D’ are Poincare duality isomor-
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phisms. Then since D(j*(x)) = A(D'(%)), it follows that the image of j* is
isomorphic to the image of A. Thus, the dimension of the image of j* is the
same as the dimension of the kernel of j,.

On the other hand, since R is a field, the universal coefficient theorem gives
a commutative diagram

H*(M:R) —— Hom(H,,(M;R),R)

J* Us) #

H?"(6M; R) —— Hom(H,,(éM;R), R)
in which the horizontal maps are isomorphisms. Then it is easily checked
that the dimension of the image of j* is equal to the dimension of the image
of j,.
Putting these together we have
2-dim im j* = dim ker j, + dim im j_
= dim H,,(0M;R)
= dim H*(3M;R).

Thus, the image of j* is a subspace of H2*(éM; R) of half the dimension. It
follows from Lemma 6.39 that the index of éM is zero. O

Note that Theorems 6.38 and 6.40 give certain necessary conditions for
closed manifolds to be boundaries of compact manifolds of one dimension
higher. These conditions are more closely related than may be readily
apparent.

6.41 Proposition. If M" is a closed oriented manifold, then
(M) = (M) mod 2.

Proof. This is clear if the dimension of M is odd since y(M) = 0 = t1(M). If
dim M = 2 mod 4, then by Corollary 6.36 (M) is even, hence congruent to
(M) mod 2. If the dimension of M is 4k, then y(M) = dim H?**(M; R) mod 2.
On the other hand, (M) = r — s, where r + s = dim H*(M;R). Thus

(M) — 1(M) = 2s = 0mod 2. O

From considering such examples as $2" or CP(n) it is apparent that the
congruence in Proposition 6.41 cannot be replaced by equality.

“Index” invariants of this type for manifolds are very important in alge-
braic and differential topology. Of particular interest is their connection with
analysis, which arises from the analytical interpretation of cohomology
groups via the theory of Hodge and de Rham. Much significant progress has
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been made in recent years in relating geometric invariants to such analytical
invariants as the indices of differential operators.

The results of Theorems 6.38 and 6.40 introduce us to another area of
considerable current interest. Let M" be a closed, oriented manifold. M"
is said to bound if there exists a compact, oriented manifold W"*! and an
orientation-preserving homeomorphism of M" onto dW"*!. Note that it is
essential to require W"™! to be compact, as M" will always bound M" x
[0, 1) if [0, 1) is properly oriented.

Two closed, oriented n-manifolds M} and M3 are oriented cobordant,
M7 ~ M35, if the manifold given by the disjoint union M} u — M3 bounds a

compact (n + 1)-manifold W"*!, where — M} is the manifold given by revers-
ing the orientation on Mj. The manifold W"*! is called a cobordism between
M¢{ and M35.

This defines an equivalence relation on the class of closed oriented n-
manifolds. To see this, note that M" ~ M" because M"u —M" is homeo-
morphic to the boundary of M" x [0,1] by an orientation-preserving
homeomorphism. To establish transitivity we glue two cobordisms together
(Figure 6.17). That is, if W™l = M7U —M3} and V" = Mju - M}
then by identifying W"*! and V"*! along the common copy of M5 we get
a compact oriented manifold with boundary oriented homeomorphic to
Miu —M;.

Let [M"] be the equivalence class represented by M". Denote the set of
equivalence classes by RSTOP. We define an additive operation in R5TOF by
setting [M}] + [M3] = [M} U M3], the equivalence class of the disjoint
union. This gives RSTOP the structure of an abelian group in which —[M"] =
[—M"] and the additive identity is the equivalence class of those manifolds
which bound. The graded group

a0
STOP __ STOP
‘R* - Z ‘R"

n=0

may be given the structure of a commutative graded ring by defining [M{]-

-
-

()

-
-

n
Mn Wt My M ot My
1 2

Figure 6.17
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[M5] = [M} x M3], the unit being the class of a positively oriented point in
NETOP. MITOF is the oriented topological cobordism ring.

If in the previous discussion we omit all references to orientation, there
result the unoriented topological cobordism groups MI°P. Denoting the
unoriented equivalence class of the closed manifold M" by [M"],, it is appar-
ent that 2-[M"], = 0 since M"u M" bounds M" x [0,1]. Thus the un-
oriented topological cobordism ring RLOF becomes a Z, -algebra.

Define mappings ¥: N7 — Z and ,: NP — Z, by W([M"]) = ©(M"),
the index of M", and W¥,([M"],) = x(M") reduced mod 2. By Theorems 6.38
and 6.40 these are well-defined functions of the respective cobordism classes.
Furthermore, since both invariants are additive over disjoint unions and
multiplicative over cartesian products, \¥ and ¥, are ring homomorphisms.

A closed, oriented 0-manifold is a finite collection of points, each given a
positive or negative orientation. It bounds if and only if the “algebraic” sum
of the points is zero. Similarly an unoriented 0-manifold bounds if and only
if it consists of an even number of points. Thus, ¥: TP - Z and ¥,:
NI > Z, are both isomorphisms.

Note that since any closed 1-manifold is homeomorphic to a finite disjoint
union of circles, it follows immediately that RJOF = 0 = N§TOP,

Exercise 16. From the classification of closed 2-manifolds, compute M3°F and
NP

It is evident that since each RP(2n) has Euler characteristic equal to one,
W,: NIOF 5 Z, is an epimorphism for each n. Similarly each CP(2n) has
index +1 so that W: TP — Z is an epimorphism for each n.

The structure of these rings has remainded a mystery for some time. Re-
cently the ring 91°F has been determined in all dimensions #4 by Brumfiel
et al. [1971], using results of Kirby and Siebenmann [1969]. As an excellent
further reference in this area we recommend Stong [1968].



CHAPTER 7
Fixed-Point Theory

We are interested in studying the behavior of continuous functions on mani-
folds with particular interest in detecting the presence or absence of fixed
points or coincidences. This is a classical problem, so it may prove enlight-
ening to take a brief look at some of its early development.

During the 1880s, Poincaré studied vector distributions on surfaces. For
an isolated singularity of such a distribution he assigned an index which was
an integer (positive, negative, or zero). A vector distribution may be inter-
preted as a map of the surface to itself by translating a point via the vector
based at that point. Here the fixed points of the map are the singularities of
the distribution. Thus, summing the indices of the isolated singularities was
the first step toward “algebraically” counting the fixed points of a map.
Poincaré proved that if the surface is orientable of genus p and the distribu-
tion has only isolated singularities, then the sum of the indices is 2 — 2p.

At the beginning of the twentieth century, Brouwer defined the degree of a
mapping between n-manifolds. This allowed him to prove his fixed point
theorem for mappings of D" as well as to extend from 2 to n dimensions the
definition of the index given by Poincaré. One of his important results was: if
f and g are homotopic mappings of an n-manifold to itself and both f and g
have only a finite number of fixed points, then the sum of the indices of the
fixed points is the same for both functions. Since every mapping can be
deformed into one with only a finite number of fixed points, this produces a
homotopy invariant for the “algebraic” number of fixed points.

In 1923 Lefschetz published the first version of his fixed-point formula. Let
M be a closed manifold and f: M — M be a map. Then for each k there is the
induced homomorphism on homology with rational coefficients

S Hi(M;Q) > Hi(M; Q).
For each k we may choose a basis for the finite-dimensional, rational vector

186
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space H,(M; Q) and write f, as a matrix with respect to this basis. Denote by
tr(f;) the trace of this matrix. If we define the Lefschetz number of f by

LN = 3 (- 1Fur(h)

then L(f) is independent of the choices involved and hence is a well-defined,
rational-valued function of f. It is evident that L(f) depends only on the
homotopy class of f.

To see how this is connected with the earlier work of Brouwer, consider the
case of a closed orientable manifold. Lefschetz proved the following: for each
¢ > 0 there is an ¢-approximation g to f (here we are assuming a metric on
the manifold) such that (i) g has only a finite number of fixed points, and (ii)
for each fixed point x of g, g takes some neighborhood of x homeomorphi-
cally onto some other neighborhood of x. If x,, ..., x,, are the fixed points of
g, denote by a,, ..., a,, the local degrees of g at these points in the sense of
Brouwer. Then Lefschetz showed that

N

Il
—

L(g) =), q

i
13

Now for ¢ small, f and g are homotopic; hence, f, = g, and we have

L(f)=

1[\’]5

This implies that L(f) is always an integer and leads to the celebrated
Lefschetz fixed-point theorem: if L(f) # 0, then f has a fixed point.

The idea of the proof is as follows: in the product space M x M consider
the diagonal A(M) (Figure 7.1). Denote by G(g) the graph of the function g.
The points of A(M) n G(g) correspond to the fixed points of g. The previously

G(g) AM)

MXM

M

Figure 7.1
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stated process of approximating f by g corresponds to making slight changes
in G(f) in order to put it into “general position” with respect to A(M). Here
we see that the a; have the proper interpretation, determined by that particu-
lar intersection of the graph with the diagonal. Considering A(M) and G(g)
as n-dimensional chains in M x M, Lefschetz computed their intersection
nunber and showed it to be the trace formula.

As a special case we may take f to be the identity map. Then L(f) = y(M),
the Euler characteristic of M. If M is a connected, differentiable manifold
which admits a nonzero vector field, we may interpret this as before as a map
homotopic to the identity but having no fixed points. Thus, L(f) = 0 and this
implies (M) = 0. The classical theorem of Hopf is the converse of this, that
is, that if (M) = 0 then M admits a nonzero vector field.

Generalizing the previous, if f and g: M, - M, are maps between closed
oriented n-manifolds, a coincidence of f and g is a point x € M, such that
f(x) = g(x). Geometrically, if G(f) and G(g) are the graphs of the respec-
tive functions in M; x M,, their points of intersection correspond to the
coincidences.

From the diagram

H,(M,;Q) —L— HM,;Q)

H™(M,;;Q) «<— H"9(M,;Q)

where the vertical homomorphisms are Poincaré duality isomorphisms, we
define

0, H,(M,;;Q) - H,(M,;Q)
to be @, = ug*v='f,. Then the coincidence number of f and g is given by

n

L(f.g9) = ¥ (~17u(®,)
=
As before, L(f,g) is the intersection number of G(f) and G(g), so if L(f,g) #
0, f and g have a coincidence. Note that if M, = M, and g is the identity,
then L(f,g) = L(f).

In this chapter we will prove these major results in the framework of the
previous chapters. We will do this by first defining the coincidence index and
the fixed-point index and establishing their basic properties. By introducing
certain characteristic cohomology classes we establish the link between these
indices and the corresponding coincidence numbers and Lefschetz numbers.
In the process we encounter the Euler class and show that when evaluated on
the fundamental class it yields the Euler characteristic. The principal tools
used are the Poincaré duality theorem and the Thom isomorphism theorem.
We close with some applications and observations.

It should be pointed out the spaces we consider, closed, oriented mani-
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folds, could be made much more general. Similar techniques may be applied
in the nonorientable case by using twisted coefficients. Many of the theorems
are valid for such spaces as euclidean neighborhood retracts [Dold, 1965].
We impose these restrictions both for the purpose of continuity with the
previous material and so that the reader may easily grasp the fundamental
ideas involved. Many of the techniques of this chapter have been evolved
from the excellent papers of Dold [1965] and Samelson [1965].

Let M, and M, be closed, connected, oriented n-manifolds with fundamen-
tal classes z; € H,(M,), and corresponding Thom classes

Ue H'(M; x M, M; x M; — A(M,)), i=12

Suppose W is an open set in M, and
f? g: W - MZ

are maps for which the coincidence set C = {x € W|f(x) = g(x)} is a compact
subset of W.

By the normality of M, there exists an open set V in M, with Cc V <
V = W. Define the coincidence index of the pair (f,g) on W to be the integer

17", given by the image of the fundamental class z; under the composition

excision

Hn(Ml)_)Hn(MhMl e V)—:—*H"(VV,W—‘ V)
M‘*Hn(l\’fz X My, M, x M — A(M,)) = Z.

Here the map (f,g): W — M, x M, is given by (/. g)(x) = (f(x),g(x)), and the
identification

H (M, x My,M, x M, — A(M,)) = Z

is given by sending a class o into the integer (U,,a). That this is an iso-
morphism follows from the fact in Equation (6.19) that for pe M,,
Uy Lu(s(p)y = 1.

It must first be shown that this definition is independent of the choice of
the open set V. Suppose V' is another open set with C < V' < V' < W. Then
consider the following diagram:

H(M M, — V) ———— H(W,W ~V)

HM,) » H M M, —(VAV)) S5 HWW—(VnV)) - H(M;).

HM M, ~ V) —— HW,W~V)

Here, as in Chapter 6, M denotes the pair (M, x M,, M, x M, — A(M,)).
Since each triangle and rectangle commutes, the images of z; across the top
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and across the bottom must be the same. This shows that I;f'g is independent
of the choice of V.

Exercisk 1. Let W’ be another open set in M, and f’ and g": W’ —» M, be maps such
that f = f"and g =g on Wn W’ and

C'={xeW|f(x)=g'(x)}
is equal to C. Then show that
IJ""/-.g’ = If‘f/g'

This exercise tells us that the coincidence index is completely determined
by the behavior of the functions around the coincidence set. In this sense it
may be viewed as a local invariant. It is of particular interest then to see
how the later results will amalgamate these local invariants into a global
invariant.

Now suppose W = W, u W, U --- U W, is a disjoint union of open sets and
denote by C,; the compact set C ~ W, and by f; and g, the restrictions of f and
gtoW,.

7.1 Lemma.
k
vaf,a = i; Ifo,'yf'
That is, the coincidence index is additive.

Proof. For each i choose an open set ¥, such that C; < V; < ¥, < W, and set
V = (i, V;- Then the result follows from the commutativity of the following
diagram:

H(W, W - V)

(f,9)«

&

Hy(My) ~ H(M,, M, = V) H (W, (W = V) = H(M5).

= (S0 9

it

t

More generally, for any W let C = C, U+ U C; be a decomposition of C
into disjoint compact sets. Then by repeatedly using the normality of M, we
can find a disjoint collect of open subsets of W, denoted Wi, ..., W, such that
C, < W, for each i. Setting W’ = ( | W, we can apply Lemma 7.1 and Exercise
1 to conclude that

k
wo_ W
If,y - Zl If.-,y.-'
i=
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7.2 Lemma. If C = (¥, then I, = 0.

Proof. Suppose f and g have no coincidence points in the open set W. Then
for any V, the map

(f,9): W, W — V)= (My; x My, My x M, — A(M,))

can be factored through the pair (M, x M, — A(M,), M, x M, — A(M,)) so
that the induced homomorphism (f, g), must be zero. O

1.3 Corollary. If I}, + 0, then f and g have a coincidence in W. O

7.4 Lemma. Suppose f, and g,;: W - M,, 0 <t < 1, are homotopies and de-
note by

G = {X € W|ft(x) = gt(x)}
for0<t<1.1f D=1,C, is a compact subset of W, then
IW

—_ W
fo.90 Ifxvgx’

Proof. Let V be an open set with D € V < ¥V < W. Then the maps
(f9): (W, W — V) = (M x My, M, x M, — A(M,))
for 0 < 1 < 1 give a homotopy of maps of pairs; hence

(fo,go)* =(f1’gl)* and I;:,go=1;‘1,vyx' D

EXERCISE 2. Suppose M| and M are closed, oriented m-manifolds and f” and g":
W' — M, are maps, where W’ is open in M. If

C={yeWlf =9}
IWx W’

is a compact subset of W’, show that the coincidence index I %", . is defined and is
equal to (If) - (IF,).

As a special case of this construction we may take M; = M, (denoted by
M) and g = identity on the open set W. Here a coincidence of f and g is
merely a fixed point of f. For this reason the coincidence index If,4 is denoted
1 and called the fixed-point index of f on W. For convenience we restate the
previous results in terms of the fixed-point index.

7.5 Lemma. If f: W' > M is a map from an open set W' in M such that
f=f" on Wn W’ and the fixed-point sets of f and f' are the same compact
subset of WA W', then I = I}V, O

7.6 Lemma. I[f W =W, U W, u---u W, is a disjoint union of open subsets of
M, then

k
=3 I O

i=]
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7.7 Lemma. If 1} + O, then f has a fixed point in W. O

7.8 Lemma. If f,: W — M is a homotopy for which the set
D={xeW|fi(x)=xforsome0 <t<l}
is compact, then IV = IfV. O
For most of the cases we will consider, the open set W will be the entire

manifold M,. In this case we may choose the open set V to be M, so that the
coincidence index becomes the image of the class z; under the homomorphism

(f,9)s: Hi(M,) > H, (M) = Z.
When this occurs, the coincidence index is denoted by I, , and the fixed-point
index by I,.
EXAMPLE. Suppose M, and M, are closed, connected, oriented n-manifolds,
pe M,, f(M,) = p, and g has the property that
g*: Hn(Ml) - Hn(MZ)

is given by g,(z,) = m*z,. We want to determine the coincidence index I ,.
To do this consider the following diagram:

Hy(M)) o > H(M3)
(9 /
9+ H,(p x M;)— H,(p x (M, M, — p)) fo*
H,(M,) » H(My,M, — p)

The definition of f allows us to factor ( f, g), through the upper rectangle. The
commutativity of the other portions follows by using the natural identifica-
tions. Thus

If,g = <U2’(f’g)*(zl)> = <U2’lp*ip*g*(zl)> = <U2’lp*ip*(m.22)>
=m: <U2’lp*ip*(22)> =m: <U2’lp*(s(p))> = m.
In particular, if M, = M, and g is the identity, then I, = 1.
As another example, suppose M, = M, = M and f: W — M has a single
fixed point p € W. We want to give another interpretation of I for this case.

First, working in euclidean space, let D" denote the closed unit disk in R".
Define a map

F:D"x D"— D"
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/4 A(R")
//

d

/7 DX D"
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10} X R

Figure 7.2

by F(x,y) = %(y — x). This may be viewed geometrically in R" x R" as first
taking the element of {0} x R" which is equivalent to (x, y) modulo the linear
subspace A(R") and then multiplying by 3 (Figure 7.2).

Note that this map induces a homotopy equivalence of pairs

F: (D" x D",D" x D" — A(D")) - (D",D" — 0).
To see this define j:D"— D"x D" by jw)=(0,w). The homotopy
h,: D" — D" given by h,(w) = w/(1 + t) has ho(w) = w, h;(w) = F o j(w), and

h(D'—0)cD"—0for0<t<1.
On the other hand, define

1—t —t
g, D" x D" - D" x D" by g,(x,y) = <( )x ¥ x).

A+0 15t
It is easily checked that both coordinates lie in D". Then
Go(%,y)=(x,3),  g1(x,3) = (0,3(y — x)) = jo F(x,y)
and
g.(D" x D" — A(D")) € D" x D" — A(D") for 0<t<1.

Thus, j is a homotopy inverse for F.

Let Y be a closed, proper n-disk in M containing p such that the homeo-
morphism h: Y — D" takes p into the origin. There exists an open, proper
n-disk V in M such that pe V, V< W A Yand f(V) < Y. Denote by k: ¥V — D"
the homeomorphism and note that k restricts to a homeomorphism of the
boundaries k: 3V — S"!. We may assume that D" is oriented and both k and
h preserve orientations.

Define a map ¢: §"™' — §"7! by taking the following composition:

k-1

st a7 Ly x Y — A®Y)

hxh

2 prx D" — ADN) S D — 05 s,

where the last map is given by projecting radially from the origin.
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7.9 Proposition. The degree of ¢ is1f.

Proof. As we have observed, the chosen generator for H,_,(S"™') is given by
the image of the fundamental class z of M under the composition

H,(M) - Hy(M, M — V) = H,(V,8V) 5 H,_,(8V) 53 H,_,(S""").

Note that in computing the fixed-point index of f on W we may choose the
open proper n-disk V. Consider the following commutative diagram:

Hy(M) - H (MM — V) S HW,w - v) L2 (M)~ Z

% |incl, ~ |incl,

H(V,07) L2 H(Y x Y, Y x ¥ — A(Y))

=~ [(hxh),

H,(D" x D",D" x D" — A(D"))

+

H,_y(S"™) = H,_,(37)

[Fo(hxho(f,i), H,_, (D" - 0):H,,_1(S""1)

Note that since the chosen generator of H,(M ™), I ,.(s(p)), arises from the
orientation of the “vertical space” at (p,p) € A(M) and the equivalence F
collapses onto this vertical space, the vertical composition on the right takes
1,«(s(p)) into the chosen generator for H,_;(S"™'). Now all of the vertical
homomorphisms are isomorphisms, so if the composition across the top

takes z into m - 1,«(s(p)), then ¢ must have degree m. ]

Note: As pointed out in the introduction, this is an important step: iden-
tifying the local degree of f at an isolated fixed point (degree of ¢) with the
local fixed-point index.

Having established these basic properties of the local index, we turn our
attention to the corresponding global invariants. As before, we assume that
M, and M, are closed connected oriented topological n-manifolds with fun-
damental classes z, and z,, respectively, and that f and ¢g: M, - M, are
maps.

Using the coefficient homomorphism Z 5 @, we denote by 2, and Z, the
images of z;, and z, in rational homology. That is

Z, =¢,(2,)e H(M;; Q) and Z, = g,(2;) € H,(M;; Q).
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Consider the following diagram of groups and homomorphisms:

HM;0) —L— H M0

x| Dy x | Dy

H™(M,;Q) «—<— H"%(M,;Q)

where D, and D, are the Poincaré duality isomorphisms corresponding to Z,
and Z,, respectively. For each q define

@, H,(M,;Q) - H,(M,; Q)

by ©, = D, o g* o D;' o f,. Then the Lefschetz number or coincidence number
of the pair (f, g) is defined to be the rational number

L(f,g) =Y (=1ytr@,,

q

where tr @, means the usual trace of @, as a linear transformation from the
finite-dimensional rational vector space H,(M; Q) to itself.

There is an alternate definition which will prove to be useful. For each g let

O,y H"%(M,; Q) - H™(M; Q)

by given by
&y = D5 o f, o D, o g*.
Then we define

Lif,i9)= Y (-0,
r=1
The relationship between these two definitions is given in the following
exercises.
EXERCISE 3. Show that tr@®, = tr @,_,. Hence, conclude that
Lif,9) = (= 1VL(f.9)
EXERCISE 4. Show that L( f,g) = (—1)"L(g, f).

Recall that we have chosen a Thom class
U,e H'(M, x M,, M, x M, — A(M,))

corresponding to the fundamental class z, in the manner of Chapter 6. From
the composition

M5 M, x M, 255 My, x My 5 (M, x My, My x My — A(M,))
we define the Lefschetz class or coincidence class of (f, g) to be

g =d* o (f x g)* o i*(U;) € H'(M,).
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Here d denotes the diagonal map. Note that the composition (f x g)od is
the map we have previously written as (f,g). Let 6—},5, be the image of &, in
rational cohomology under the coefficient homomorphism.

We now want to establish a relationship between the Lefschetz number
and the Lefschetz class of (£, g). To do so we will first establish two lemmas.

Select a homogeneous basis {x;} for H*(M,; Q) and denote by {a;} the
basis for H,(M,: Q) dual to {x;} under the Kronecker index. Define another
basis {x;} for H*(M,;Q) by requiring that D,(x/) = a; and let {a/} be the
basis for H,(M,; Q) dual to {x;} via the Kronecker index.

Using the duality isomorphism D, we may define similarly related bases
{y:} and {y;} for H*(M; Q) and {b;} and {b;} for H, (M,; Q).

Suppose now that

f*xy) = Zﬁﬂ-y, and  g*(xj) = ;m'yi
for some rational coefficients f; and .
7.10 Lemma. Y, f, o D, o g*(x{) x a; = ;(f x g),(b; x b)).
Proof. Expanding g, (b/) in terms of the basis {a;} we have
9,.(b) = ; Ay g

for some rational coefficients 4,;. Then note that
T = <; Tk Vs bj’> = {g*(xi1 b

= <x1{ag*(bj/)> = <x{,; ;~kjai> = ;~ij~

Thus, g,(b)) = >.;7;4;, or, in other words, the coefficient of y; in g*(x;) is the
same as the coefficient of a; in g, ().
Using the same approach, we can show that

f*(bi) = Xl: Bia.

To prove the lemma, we first expand f, o D, o g*(x;) in terms of the basis
{a;} and note that the coefficient of g; is given by

(X Sy 0 Dy o g*(xi)) = (S *(x)). Dy o g*(x7))

= <; Bu-yi. Dy (; ?ik'yi)>

= <21: ﬁjl'yla; Vikbk>
= Z Bk Vik-
3
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Thus

Zf*ODlog*(Xl{) X a:=z< (k ﬁjk')),-k)aj) X a,f

t 1

LJs

= Zk(ﬁjk')’ik)(aj X a;).
On the other hand,
Y % @)l x ) = T £, () x g, (b)

i i

RICERE R

= Z (B 7a)(ay x ap)

ik

and the conclusion follows. J

7.11 Lemma. If d: M, - M, x M, is the diagonal and Z, € H,(M,; Q) is the
fundamental class, then

d*(fl) — Z (_ 1)(dimb,»)(dimb,'-) . bi x bi’~

Proof. This follows from the equations
(= D)modmed. Cy o yi dy(21))
= (= Dameimw. (p U yLz))
=YYy
= GeyiNiy
= b
=0, j- |

7.12 Theorem. The Lefschetz class é—”f, , and the Lefschetz number L(f, g) of the
pair (f, g) are related by the equation

<éaf,g’ 21> = L(f’ g)

Proof. Since the {x;} and {a/} are dual bases under the Kronecker index, we
may compute the Lefschetz number by

Lif,9 =Y (-1ytr®,

r

¥ (= 1)¥m 5 B(x]), af)

Z (_ l)dimx;<D2—1 of* © Dl © g*(xi’)’ al’>
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By Equation (6.21) and the fact that n — dim x; = dim x;, this is

L(f,g) = Y (= )yim=0@im=. (i%(T,), f, o Dy 0 g*(x{) x a;)

13

and by Lemma 7.10.
Lif.g) = Y (= 1ynaimba@imed. (i%(T,), (f x g),(b; x b))

1

[The sign change, while bothersome, works out nicely, since
dim f,_ (b)) = dimb;, dimg,(b/) = dim b/

and the sum of the two dimensions in each case is always n.]
By Lemma 7.11

L(f,9) = (= 1" G*(Ua),(f % 9)udy(Z,))
= (= yKd*(f x gi*i*(U,),2,)

= (_ 1)"<gf,g’ 21 >
Therefore, L(f) = (&4, 7). O

This relationship enables us to prove the following very important
theorem:

7.13 Lefschetz Coincidence Theorem. The coincidence index of the pair (f, g)
on M, is equal to the Lefschetz number of (f, g); that is

Iy = L(f.9)

Proof. Recall that the coincidence index is the integer given by
If.y =i o(f x gyodz)e H,(M;)x Z,

where the isomorphism is given by sending a class « into the integer (U,,a).

Thus
If,g = <U29i*(f X g)*d*(21)>
= d*(f x g)*i*(Uy), 2,)
= <éaf,g’ zl>

and the image of this in the rationals is just

(& ,7:> =L(f.9)
by Theorem 7.12. O

Note first that this may be viewed as an “integrality” theorem. That is, the
Lefschetz number L(f, g) is, by definition, a rational number in general. How-
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ever, its identification with the coincidence index guarantees that it will be an
integer.

7.14 Corollary. If f, g: M, — M, are maps between closed oriented manifolds
for which L(f,g) # 0, then f and g have a coincidence.

Proof. This follows immediately from the fact that
If,g = L(fag) # O
and applying Corollary 7.3. O

This is a convenient result, since in many cases the Lefschetz number is
easier to compute than the coincidence index. Before proceeding with some
applications, we examine a few special cases of the coincidence theorem.

First suppose M, = M, = M and g is the identity map. As before the
coincidence index I ;4 is written I, and called the fixed-point index. Similarly
the Lefschetz number L( f,id) is written L(f). For each k define

O, = fi: H(M; Q) > H(M; Q).

7.15 Lemma.
Y (= Ditrd, = L(f).

k

Proof. Recall that
L(f) = L(f,id) = Y (- 1) tr @,,

k
where
©,=Doid*o D' o f, =f,.
Thus, ®, = O, for each k, and the result follows. O
The Lefschetz class &; 4 is written & and, as before, its image in rational

cohomology will be denoted by é" With these definitions we have the follow-
ing immediate consequences of the previous results.

7.16 Lefschetz Fixed-Point Theorem. If f: M —» M is a map of a closed,
oriented n-manifold to itself, then I, = L(f). Thus, if L(f) # 0, then f has a
fixed point.
Proof. As in Theorem 7.13 we have

I; = <&.,2) = L(f)-

Then the second conclusion follows from Lemma 7.7. O
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In a further simplification we may take g and f both to be the identity on
M. In this case the Lefschetz class is denoted by &, and called the Euler class
of the oriented topological manifold M. The reason for this name is readily
apparent since the Lefschetz number of the identity map is the Euler charac-
teristic, that is

L(identity) = > (— 1)*tr(id,)
k
=Y (- 1)*dim HYM; Q)
k

= x(M).

Thus, as a special case of the coincidence theorem (Theorem 7.13) we have
established the following:

7.17 Corollary. The value of the Euler class of M on the fundamental class of
M is equal to the Euler—Poincaré characteristic of M. That is

(Eu,2) = 1(M). O

Note that the definition of the Lefschetz number L(f, g) is dependent only
on the homotopy classes of the maps f and g. Thus, we can observe the
following corollaries:

7.18 Corollary. If L(f,g) # 0, g’ is homotopic to g and ' is homotopic to f,
then g’ and [’ have a coincidence. U

7.19 Corollary. If f: M - M has L(f) # 0, then any map homotopic to f
has a fixed point. U

7.20 Corollary. If x(M) # 0, then any map f: M — M homotopic to the iden-
tity must have a fixed point. O

We now proceed with a number of applications of these theorems. First we
give several fixed-point theorems due to Brouwer analogous to his theorem
for the n-disk (Corollary 1.18), although slightly less well known.

7.21 Corollary. If f: 8" — S" is a map of degree m # (—1)"*", then f has a
fixed point.

Proof. If f has degree m, then the trace of f,: H,(8"; Q) - H,(S"; Q) must also
be m. Since the trace of f: Hy(S"; Q) — Hy(S"; Q) is 1, we have

L(f) =3 (=1t f9

t

=1l+(—1)"m.
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Now since m # (—1)"*! we have that L(f) # 0 and f must have a fixed
point by Theorem 7.16. U

Note that the antipodal map 4: $" — S" does not have fixed points, but, as
we saw in Corollary 1.22, the degree of 4 on S™is (— 1"

7.22 Corollary. If f:RP(2n + 1) RP(2n + 1) is a map such that f,:
H,,. (RP(2n + 1);Q) » H,,,;(RP(2n 4+ 1); Q) is multiplication by m # 1,
then f has a fixed point.

Proof. Note from the universal coefficient theorem that the rational homol-
ogy groups of RP(2n + 1) are given by

k=0,2n+ 1
H(RP(n + 1);Q) ~ {@ for k=0,2n+

0 otherwise.
Thus
L(f) = ) (=1tr £
=14+(=1)"tm
=1-m
Soifm s 1, L(f) # 0 and f has a fixed point. O

To see that the restriction in the theorem is necessary, consider the follow-
ing function on RP(2n + 1). First write S2"*! in complex coordinates as
S = {(zy,...,2,41) €C" Y 171 = 1. Let

gA. S2n+1 -—>S2"+1

be given by §(z,,...,2,+) = (- 2z,,...,i"2,.,), where i =,/ —1. Note that
g o g is the antipodal map 4 and § o 4 = A4 o §. Thus, there is associated with
g amap g: RP(2n + 1) - RP(2n + 1) for which g? = identity.

If g has a fixed point, then there must be a nonzero z, = a + b i such that
either (- z, = z; or i- z; = — z,. But neither of these can happen, hence, g does
not have a fixed point.

Note that RP(2n + 1) is a closed orientable manifold having the same
rational homology groups as a sphere of the corresponding dimension. Such
manifolds arc called rational homology spheres. 1t is evident that coroliaries
of the type of Corollaries 7.21 and 7.22 will hold for any rational homology
spheres.

7.23 Corollary. If f: CP(n) » CP(n) is a map for which either

(1) nis even, or
(2) f*: H*(CP(n)) » H*(CP(n))

is multiplication by m # (— 1), then f has a fixed point.
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Proof. Recall that
H*(CP(n), Q) =~ Q[¢]/t""",

where t € H2(CP(n); Q) is the image of an integral generator under the coeffi-
cient homomorphism. Thus, the trace of

1*: H*¥(CP(n),@) —» H**(CP(n; Q)
is m* for 0 < k < n. This implies that the trace of

39 Hy(CP(n); Q) —» Hy(CP(n), Q)
is also m* for 0 < k < n. So we have

L) =2 (=)'trf

i

=l+m+m> 4+ +m"

1 _ n+1
T
= 1 —m
n+1 if m=1.
Note that if n + 1 is odd, this number must be nonzero. On the other hand,
if n + 1 is even, it can only be zero when m = — 1. Therefore, under the
hypotheses of the corollary, L(f) # 0 and f has a fixed point. ]

Note that for n = 1, the antipodal map on CP(1) = S? has no fixed points.
Here, of course, m = — 1.

EXERCISE 5. For a general odd integer n, define a map f: CP(n) » CP(n) that does not
have fixed points.

In the same manner we may establish the following,

7.24 Corollary. If f: HP(n) —» HP(n) is a map for which either

(1) nis even, or
(2) f*: HYHP(n)) - H*(HP(n)) is multiplication by m % —1,

then f has a fixed point. U

Let us now investigate the situation for maps of the torus

T"=8"xS" x - x S,
I\ -

v
n-fold

In this case it is necessary to change coefficients to an algebraically closed
field, so let i: @ — C denote the inclusion of the rationals in the complex
numbers. Using the coefficient homomorphism on homology and cohomol-
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ogy, the previous theorems could easily be established using complex
coefficients.

Recall that H*(T";C) = E(C;x,,...,X,), the exterior algebra over C on n
generators, all of dimension 1, Thus, f*: H'(T";C) - H'(T";C) is a linear
transformation on an n-dimensional complex vector space. Since C is alge-
braically closed, there exists a basis {y,,...,y,} for H'(T";C) with respect to
which the matrix A = (a;) of f* is upper triangular. This basis retains the
property that

H*(T"’C) = E(C9yl”yn)
In H,(T"; C) denote by z,, ..., z, the dual basis. Then
i (2D = S * i) 200

- (Faons)

= Ay;-.

Thus, f,(z)) = Y i a2, and the trace of £ is given by Y ; a;;.
Denote by z; A z; the element of H,(T";C) dual to the product y; A y;.
Then {z; A z;Ji < j} is a basis for H,(T";C) and
Vi n Vi Lxlzon 2y =X yihzi A 2
=) A )z A 2z

“{(ran) (5o 0s)

= Audy; — Ay = a;dy;.

The last equality follows from the fact that i < j; hence, a; = 0. Thus, the
trace of f*' is given by

Z a;a g

i<j

Similarly we find that for 1 < k < n the trace of f* is given by

> iy Qi

P < <y
This implies that the Lefschetz number of f has the form
Zan+zan _u +(_1)"a11a22'“ann

= (1 - all)(l - (122)"'(1 - ann)
= det(I — A).

Therefore, we have established the following result.
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7.25 Corollary. If f: T" - T" is a map for which f*: H'(T") — H'(T") does
not have + 1 as an eigenvalue, then f has a fixed point. O

It is evident that many maps of the torus exist without fixed points. For
example if f,: T"' —» T"! is any map and f;: §' — §' is a nontrivial rota-
tion, then f; x f: T" — T" has no fixed points.

EXERCISE 6. Let f and g: $” - S” be maps of degree m and k, respectively. Determine
L(f.9)

EXERCISE 7. (a) Let f, g: $*" > CP(n) be maps, n > 1. Show that I, , = 0.
(b) Do there exist maps f, g: CP(n) > S*" such that I, ; = m for any integer m?

EXERCISE 8. Suppose that M is a closed, connected, oriented n-manifold with funda-
mental class z € H,(M). If f: M - M is a map for which f,(z) = k- z for some integer
k, then show that

L(f.f) = k- z(M).

The coincidence theorem gives an indirect, but appealing approach to the
following basic result.

7.26 Fundamental Theorem of Algebra, If f(z) = z" +a,_,z"" +- +a,z +
aq is a nonconstant, complex polynomial, then f(z) has a root.

Proof. Denoting by C the complex numbers, we view f as a map from C to
C. Note that | f(z)] - oo as |z| —» o0; hence, we may extend f to a map of the
one-point compactification

f:8*-> 8?2

by setting f(cc) = oo, where oo denotes the north pole.

Similarly the map g: C —» C given by g(z) = 0 may be extended to S? by
setting g(oc) = 0, 0 being identified with the south pole. Then a coincidence
of f and g will be a root of the polynomial f(z).

This situation corresponds to that of the example following Lemma 7.8, so
that the coincidence number L(f, g) = k, where

S H,(S?) - H,(5?)

is multiplication by k.

Certainly, if there is any justice, the degree of f should be n. To prove this,
define the contracting homeomorphism r: C —» D* — §* by r(z) = z/(1 + |z]).
Note that r ™! (w) = w/(1 — |wl). There is a uniquely defined map f making the
following diagram commute:
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We want to extend f to a map from D? to D2. So let wy € S! and let w
approach wy through values in the interior of D?:

fw) = r(f(r~1(w))

B '(f (1 —W|w|))

_ JOsAL = )
L+ [fOofT — TwD)
Wy WL = ) 4o 4 ag(L — wl)”
(1 — wl)" + [ + @y W™ (1 = [wl) + - + ag(l — [wly'|

so that
. oA wg
lim f(w) = — = wg.
wwo |W(’)l|
wj<1

This implies that we may extend f to be defined on all of D? by setting
f(wg) = wi. Note that the mapping r ' may be extended to a map h: D* — §?
by taking each point of §! into cc. Then from the diagram

Hy(S2, 00) —Z— H,(S2 o)

= {hy = {h,
Hy(D%,S') —2 Hy(D?,SY)

=~ | ~|é

H(sH —L H(SY
and the fact that on S*, f(e™) = ™, we conclude that the degree of f must be

n.
Therefore, L( f,g) = n and f must have a root. |

EXERCISE 9. In the above setting, suppose that z, is a root of f of multiplicity k. Show
that there exists an open set U about zg such that the local coincidence index If, is k.

The proof of Theorem 7.26 and, particularly, the accompanying exercise
demonstrate that coincidence theory is a natural way to study problems of
this type.

As another application of Theorem 7.16 we can prove the Poincaré—Hopf
theorem on the sum of the indices of a vector field. For this purpose we must
assume that our closed oriented manifold M" is differentiable.

Let v be a smooth vector field on M”" such that the singularities (zeros) of v
are isolated points of M". As observed before, we may associate with v a map
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Figure 7.3

Figure 7.4

/M — M, homotopic to the identity, having as its fixed-point set the singu-
larities of v. If x is an isolated singularity of v, one defines the index of v at x,
i., as follows, Select a coordinate neighborhood U of x, homeomorphic to an
open n-disk, which contains no other singularities of v. Within U choose an
(n — 1)-sphere about x. At each point of this sphere the associated vector of ¢
must be nonzero. Transferring this into R" and normalizing the vectors de-
fines a map from §"7' to §"7'. The degree of this map is i,.

For example, on a two-dimension manifold a singularity of index —1 is
shown in Figure 7.3, while the index in Figure 7.4 is + 2. An excellent refer-
ence in this area is Milnor [1965].

It is intuitively clear that the index i, is equal to the local degree of f at the
fixed point x as defined prior to Proposition 7.9. We may use this fact to
establish the following classical theorem.

7.27 Poincaré—Hopf Theorem. If v is a smooth vector field with isolated singu-
larities on the closed oriented differentiable manifold M", then the sum of the
indices of v is the Euler characteristic of M; that is

Y i = (M)



7. Fixed-Point Theory 207

Proof. From the observations above, the sum of the local indices of v is the
same as the sum of the local degrees of f at its isolated fixed points. By
Proposition 7.9 this is the sum of the local fixed-point indices of f. The
additivity of the fixed-point index (Lemma 7.6), together with Theorem 7.16,
implies that this sum is L( /). But since f is homotopic to the identity, L(f) =
2(M). ]

Note: The theorem of Poincaré mentioned in the introduction to this chap-
ter is a special case of Theorem 7.27. Specifically, a closed surface of genus p
has Euler characteristic equal to 2 — 2p; hence, this must also be the index
sum.

Having strayed this far afield, we may consider one more connection with
differential topology and geometry. On a smooth manifold M we may define
a cochain complex using the differential forms of M and the exterior deriva-
tive. The homology groups of the complex are the de Rham cohomology
groups of M, denoted H*(M,d). There is a natural transformation into
cohomology with real coefficients

®: H*(M, d) - H*(M; R)

that may be described as follows. Suppose that M has been smoothly trian-
gulated and w is a smooth k-form on M. Then ® associates with w the
function from the k-simplices of M into R, whose value on a given simplex is
the integral of w over that simplex.

The famous de Rham theorem states that @ is an isomorphism under which
the exterior product in H*(M,d) corresponds to the cup product in
H*(M;R). For a highly readable account of this, see Singer and Thorpe
[1967].

Let M be a closed, connected, oriented, smooth 2-manifold endowed with
a Riemannian metric. Then the volume element vol is a smooth 2-form on M
and the curvature K is a smooth function associated with the Riemannian
connection on M. The classical Gauss—Bonnet theorem then states that if the
2-form K-vol is integrated over the manifold M, the result is 27 x(M). In
other words,

1
— | K-vol= .
- L vol = (M)

The connection between these results and the previous is that integrating a
2-form over the manifold M corresponds under ® with taking the Kronecker
index with the fundamental class. It follows by Corollary 7.17 that the
cohomology class represented by the 2-form (1/2m) K - vol is assigned by @ to
the Euler class &, of M.

As a final application let M be a closed, oriented n-manifold. A flow on M
is a one-parameter group of homeomorphisms of M. Specifically, a flow is a
function
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ORxM-M
which is continuous and satisfies

(1) ¢(t1 + t2’x) = ¢(tl’¢(t2’x))’
(i) #(0,x) =x

forallt,,t, e Rand x e M.

Note that for each t € R this defines a homeomorphism ¢,: M - M by
#,(x) = 4(t,x) because ¢, ' = ¢_,. A point x4 € M is a fixed point of the flow
if ¢,(xo) = xq for all t € R. Flows arise naturally on closed differentiable mani-
folds as the parameterized curves of a given vector field.

7.28 Theorem. If M is a closed oriented manifold such that (M) # 0, then any
flow on M has a fixed point.

Proof. For any t, € R the homeomorphism

¢ M—->M

is homotopic (actually isotopic) to the identity. So L(¢, ) = L(identity) =
x(M) # 0, and ¢, has a fixed point.

Now for each positive integer n denote by F, the fixed-point set of ¢, .. It
follows from the additivity of the parameter that F, will be fixed by @,,,. for
any integer m. F, is also compact since it is the inverse image of A(M) under
the composition

d ¢yanxid
MSMx M5 M x M.
For each positive integer n we have F,,; < F, because
Gram1 © Prpner = ¢1/2"-

Thus, {F,} is a nested family of nonempty, compact subsets of M which must
have a nonempty intersection F.

This set F is fixed by ¢, for any dyadic rational r. Since these are dense in
R, the continuity of ¢ implies that each point of F must be a fixed point of the
flow ¢. U

Exercise 10. A flow on a manifold is the same as an action of the additive group of
real numbers on the manifold. Using the techniques of this chapter, what results can
you derive concerning actions of pathwise connected groups on closed oriented mani-
folds (for example, the additive group R” or the multiplicative group S')?

Exercise 11. Let f and g be maps from S3 to S2. Show that if f is not homotopic to g,
then f and g must have a coincidence.

It should be pointed out that although the fixed-point techniques we have
developed can be very useful, they are still inadequate to solve many prob-
lems. As a specific example we cite the “last geometric theorem” of Poincare.



7. Fixed-Point Theory 209

Figure 7.5

Suppose that we have an oval billiard table as in Figure 7.5, on which a
single ball is rolling. Do periodic orbits with k bounces per period exist for
every k > 27

That the answer is yes was conjectured by Poincaré and proved by
Birkhoff [1913].

If we orient the boundary curve, then the initial motion from the cushion
is determined by the initial point x and the angle 8 of projection measured
from the forward pointing tangent (so 0 < 8 < =). This set of initial motions
given the product topology is an annulus 4 = §* x [0, #].

Now define

F:A- A4

by taking each initial motion onto that which follows the next bounce of the
orbit. The conjecture may be stated by saying that F* has a fixed point in the
interior of A4 for all k > 2.

In solving the problem, the following theorem was proved: Any mapping
G: A — A has two fixed points in the interior of A if

(i) G isa homeomorphism leaving every point of the boundary circles fixed;
(i) the G image of a radial 1-cell wraps at least twice around the annulus;
(ii)) G preserves areas.

It is interesting to note that this problem could not have been solved by our
techniques because the Lefschetz number in this case is zero.

In closing we consider briefly the question of the existence of a converse
to the Lefschetz fixed-point theorem. For differentiable manifolds the Hopf
theorem states that if y(M) = 0, then M admits a nonzero vector field, hence
a map without fixed points which is homotopic to the identity. For topologi-
cal manifolds there are a number of results by Brown and Fadell [1964],
and others. As representatives of these results we state the following two
theorems.

7.29 Theorem. Let M be a compact, connected topological manifold. Then

(iy M admits maps close to the identity with a single fixed point;
(ii) (M) = 0if and only if M admits maps close to the identity without fixed
points. |
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7.30 Theorem. If M is a compact, simply connected topological manifold and
S M — M is a continuous map with L(f) = 0, then there exists a map g homo-
topic to f such that g is fixed-point free. |

For a deeper, more comprehensive study of fixed-point theory see Brown
[1971].



Appendix I

The purpose of this appendix is to give a proof of Theorem 1.14. The proof
requires the development of the subdivision operators on the chain groups.
This fundamental technique is at the basis of essentially all of the computa-
tions and applications we will be able to make.

If C = R" is a bounded set, then the diameter of C is given by diam C =
lub{||x — yll|x,y € C}.If € = {C,} is a family of bounded subsets of R", then
mesh € = lub{diam C,}.

1.1 Proposition. If s" is an n-simplex with vertices ay, a,, ..., a,, then diams" =
max{|la; — a;|[i,j = 0,...,n}.

Proof. Let x =5 t;a,and y = 3 t/a, be points in s". First fix x and allow y to
vary. We want to show that

lub [|x — y|l = lub |x — a].

Now
Ix =yl = llx = Y tia;ll = 1 ti(x = )|
s Yl x —al = X tllx — ai
< Y t{-max{||x — a;|} = max|x — a;].
Repeating the above, letting x vary gives
Ix =yl < max|la, — a|l. O

Let s” be an n-simplex with vertices aq, a,, ..., a,. The barycenter b(s") of
s" is the point in s" given by

211
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Sd(s?) Sd(s?)

Figure 1.1

b(s™) = (1/(n + D)(ag + - + a,).
It is not difficult to show that for any i with 0 < i < n, the points
{B(S™), a0, .. » Qi gy Aiirs. Ay}

span an n-simplex. We now define the barycentric subdivision Sd(s") induc-
tively on the dimension of the simplex. First set Sd(s°) = s° for any zero
simplex s°. Suppose now that Sd is defined on any simplex of dimension
(n— 1), so if t*7! is any (n — 1)-simplex, Sd(t""!) is a collection of (n — 1)-
simplices geometrically contained in t"~!. Denote by §" the collection of all
(n — 1)-faces of s" and define
Sdism = [J Sd("™).
=T egn

Then Sd(s") will consist of all n-simplices of the form (b(s"), tg, ..., t,—), where
(to,...,t,—y) is an (n — 1)-simplex in Sd(s") (Figure I.1).

1.2 Propesition. If K is a collection of n-simplices, then

mesh Sd(K) < (n/(n + 1)) mesh K.

Proof. Proceeding by induction on n, for n = 0 both sides are zero. So sup-
pose the result is true for any collection of (n — 1)-simplices. Let t" be an
n-simplex in Sd(K). Then t" = (b(s"),ug,...,u,_,) where s" € K and u,, ...,
u,_, are vertices of an (n — 1)-simplex w in Sd(s"). Let s"* be the (n — 1)-
simplex in §" containing w.

By Proposition 1.1

diam t" = max{[lu; — ul|, ||u; — b(s")|| }.

First consider the terms of the form ||u; — u,||. We know that
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fu; — u;|| < diamw < ((n — 1)/n)diam s"™*

by the inductive hypothesis. Now since x/(x + 1) is an increasing function
and the diameter of a subset is less than or equal to the diameter of the set,
we have

n—1 .
diam s".

diams" ™! < "
n+1

Hence, any term of the form [u; — u;|| is less than or equal to (n/(n + 1))

diam s".

For the terms ||u; — b(s")|} recall that if ug, ..., u, are the vertices of s" then
b(s") = (1/(n + 1))->_u;. Each vertex u, is a point in s” so that |lu; — b(s")|| <
lu; — b(s")|| for some j by the proof of Proposition I.1. Then
uj — u;

i£j n+1

lluj — b(s")Il =

2

1
u — —— > u;
T oon+1 21: !
where the sum now has n terms. But then

1
> < —u

Zin+l| n+15

'

u —

’
i uj

< n mx” ! !
ntl axiju; —u|

< diam s”".

“n+1

Thus, all terms will satisfy the desired inequality and the proof is complete.

a

1.3 Corollary. If K is a collection of n-simplices, let Sd™(K) = Sd(Sd™ ! (K))
be the iterated barycentric subdivision. Then for an n-simplex s" and any ¢ > 0
there exists a positive integer m such that

mesh Sd™(s") < e.

Proof. This follows immediately from Proposition 1.2 and the fact that

lim< " ) —0. O
m-o \N+ 1

With these basic properties of the subdivision operator on simplices in
mind, we now want to define an analogous operation on singular simplices.
If C and C' are convex sets, a map f: C - C’ is affine if given x, ye C,
0<t<1,then

S =0x +ty) = (1 = f(x) + tf(y).

It follows from this that if xo, ..., x, € C and t,, ..., t, are nonnegative with
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¢ $d'((¢)) €y (o) (39))

Figure 1.2

Y t, =1, then

f(z LX) = Z L f(x,).

If C is convex, define 4,(C) < S,(C) to be the subgroup generated by all
affine singular n-simplices ¢: g, — C. Denoting by vg, vy, ..., v, the vertices of
a,, for any affine ¢: g, — C let x; = ¢(v;). Then we can denote ¢ by xgx; " x,,.
In this notation it is evident that

Oi(Xox 1 Xy) = (Xo " Xjo1 Xpsy """ X).

Thus, 8(4,(C)) = A,-,(C) and {4,(C)} = A,(C) is a chain complex.

We now define a chain map &’: 4,(C) — 4,(C) which is the algebraic
analog of the subdivision operation. The definition is given inductively on
the dimension n. For n = 0 let <’ be the identity. Suppose now that it is
defined up through dimension n — 1, and let ¢ = xyx, - x, be an affine
singular n-simplex in C. The barycenter of ¢ is the point

Xg + 4+ x,
big) = * "
For any point b € C define a homomorphism
%, A,-(C) > A4,(0)
by
Co(yoys Yu-1) = (BYoy1 ™ Yu-1):

This is called the cone on b for obvious geometrical reasons. Finally, define
for any affine singular n-simplex ¢ (see Figure 1.2)

Fd'(§) = Cpip/(F'(09)).
1.4 Proposition. 0 o o' = Fd' 0 0.

Proof. 1t is sufficient to check this on some affine singular n-simplex ¢ =
XgX; ' X,. Let b = b(¢). Certainly the formula is true in dimension n = 0, so
assume that it holds in dimension (n — 1),

0Fd (xg " x,) = 06 ,(FL'O(xq " X,)).
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We may split up the boundary on the right into those terms containing b and
those not containing b,

0Fd (xg " Xp) = Fd'0(xg" " Xp) — €(0Fd O(xg" " X))
But the second term here must be zero, for by the inductive hypothesis
0Fd ' (xg X)) = Fd'00(xq x,) = 0.
Therefore
0Fd' = Sd'0. O
Thus, #«': A,(C) = A _(C) is a chain map of degree zero. Since the homol-
ogy should not be affected by subdividing simplices, it is reasonable to expect

that %' is chain homotopic to the identity. To verify that this is indeed the
case we must define 2 homomorphism

T': 4,(C) - A,.,(C)
such that
OT' + T'0 =" — 1.
We define T’ inductively on n. Since for n = 0, %' is the identity, we take T’
to be zero. Now suppose T is satisfactorily defined on all chains of dimen-

sion less than n and let ¢ be an affine singular n-simplex.
Note that

oS —¢—Top)=[05d' —0 —(Fd' — 1 — T'0)0]¢
=0 since $'0 = 0F' and 90 = 0.
Then set
T'(§) = o (Sd'd — ¢ — T'09).

To compute dT'(¢) we split it up into that part containing b(¢) and that
part not containing b(¢). In other words,

oT'(§) = (Sd'¢ — ¢ — T'09) — €, 0(Fd'p — ¢ — T'09).
But from the above computation, the second term must be zero and T has the
desired property.
If f: C — C' is an affine map between convex sets, then
[#(4,(0) € 4,(C)

and f, commutes with both ¥’ and T".
We want to use the above homomorphisms to construct a degree-zero
chain map

S S,(X) - S,(X)

for any space X, and show that it is chain homotopic to the identity.
Using the same technique as in the proof of Theorem 1.10, let y/: g, — X be
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a singular n-simplex. There is the induced homomorphism
Yy Si(0,) = S,(X).
Now the element 1, € S,(g,) given by the identity map is in 4,(g,). So define
Fd () = Fd,(t,) = ¥, Fd'(t,).

This just has the effect of subdividing the simplex by subdividing in its
domain, which is convex. Similarly, set

TW) = Ty (1) = ¥, T'(z,).
LS Proposition. 0T + T0 = ¥/ — 1.
Proof. This follows immediately from the same properties of T"and ¥Z'. O

We are now ready to give a proof of the theorem.

1.14. Theorem. If % is a family of subsets of X such that Int % covers X, then
the chain map i: S,(X) — S, (X) induces an isomorphism

iy Hy(S (X)) - Hy(X).
Proof. We will construct a chain map ®: S, (X) — S7(X) such that @i is the
identity and i @ is chain homotopic to the identity.
Let ¢: 6, » X be a singular n-simplex. The family ¥ = {¢ "}(U)|U € %}
has Int ¥~ covering g,. Since g, is compact, there exists a > 0 such that if

C < 0, and diam C < 4, then C is contained in ¢~*(U) for some U.
By Corollary 1.3 there exists an m > 0 with

mesh 8d™ g, < 4.
This will imply that
Fd"p € S (X).
Now for any singular simplex ¢ in X let m(¢@) be the least integer for which
Fd™ P e S (X).

Note that for 0 < i < n, m(¢) > m(0,9).
Recall that éT + TO = %< — 1, so for any positive integer k we have

OTSd* ! + TSA* 0 = Fd* — S
Adding a sequence of these together gives
OT(1 + -+ S Y)Y+ Tl + - + FL* )0 = Fd* — 1.
So we define for any ¢
T(@p) =T +Fd + -+ L™,
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and consider
@7 + 70)p=2(—D)aT( + - + Fd"97)¢
+ Y (=T + - + FL™P™N)a4,
By the above we have
@7 + T70)p=Sd" V% —¢p— T(L + - + Sd™7")0p
+ ()T + o+ SL™D 759

— dm(¢)¢ _ ¢ . Z (_ l)iT(ydm(F',-(b) 4o .Vd"'m'l)a,-q).
i=0
This leads us to define
O(p) = L™ — Z (=) T(FL™ P + - + Fd™ D7),
{=0

From looking at the summation we conclude that
() € S,/ (X).
To consider ®(¢) as an element of S,(X) we apply the mapping i. The above
manipulation shows that
0T + T 0 =io® — 1,
hence, i o ® is chain homotopic to the identity. On the other hand, if ¢ €
S, (X), then m(¢) = 0 and ® o i is the identity. O



Appendix II

The purpose of this appendix is to prove two of the basic theorems on topo-
logical manifolds which were used in Chapter 6. The first theorem states that
any closed topological manifold may be imbedded in some euclidean space
R" and that the imbedded manifold is a retract of a neighborhood in R". The
second theorem states that the boundary of a compact topological manifold
admits a collaring.

The first result is an excellent example of a “folk” theorem, that is, a result
which is well known and may be proved in a variety of ways, but which is
difficult to locate in the literature or trace to its true origin. The imbedding
technique we use is due to Dold, whereas the approach to the retraction
property was suggested by Bing.

The second result is of more recent vintage. A collaring theorem for differ-
entiable manifolds was proved by Milnor, and the analog for topological
manifolds, by Brown [1962]. The proof we present here is due to Conelly
[1971].

IL.1 Theorem. If M is a closed topological n-manifold, then M can be im-
bedded in euclidean space R* for some k.

Proof. Let By, ..., B, be a collection of proper open n-balls in M which cover
M.Fori=1,...,mdenote by

Ei: Bi - S’l — {y}

a homeomorphism onto the complement of the north pole. We can extend
each h; to a map

h: M- §"

218
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Figure 11.1

by defining

_fh(x) if xeB
hilx) = {{y} if xeM - B,

Now define the map
l'..M__)S’l x Sn X X Sng R"+1 x R"+1 X % R"+1 — Rm(n+1)

by i(x) = (h,(x), h5(x),..., h,(x)). Then i gives the desired imbedding. O

Note; In general this is not a very economical way to imbed the manifold.
That is, the dimension of the euclidean space is much higher than is generally
necessary. For example, the covering of a circle by two proper 1-balls will
produce the imbedding illustrated in Figure II.1 (actually in R*).

Suppose now that i: M" — R* is an imbedding of a closed topological n-
manifold. Denote by sa large k-simplex in R* containing M in its interior. We
want to triangulate the complement of M in s in a particular way. Denote by
Sd the barycentric subdivision operator defined in Appendix 1 and let s, =
Sd(s), a simplicial complex that is a finite union of k-simplices.

Now examine each closed k-simplex in s,. To those which intersect M we
apply the operator Sd. Those which do not intersect M are left intact. The
resulting simplicial complex is denoted s,.

By continuing this process, we produce a sequence of finite simplicial com-
plexes {s,}, each a finite union of closed k-simplices, with the property that s,,
subdivides s, whenever m > n (Figure 11.2).

I1.2 Lemma. This process defines a triangulation of s — M. In other words,
for every point x of s — M there is an integer m such that each k-simplex
containing x in s,, remains intact in s, forallm’ > m.

Proof. Let x € s — M. Since M is compact, the distance from x to M is some
positive number ¢. By Corollary 1.3 there is a positive integer m such that

mesh Sd™(s) < &.
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(a) (b)

()
Figure 11.2

There are two possibilities:

(a) at some stage s;, | < m, all of the closed k-simplices containing x were
disjoint from M; or
(b) at each stage s;, | < m, some closed k-simplex containing x intersected M.

In the first case, for all stages beyond s, the triangulation around x remains
unchanged. In the second case, each k-simplex of s,,_, that intersects M will
be a k-simplex of Sd™!(s). Thus, the k-simplices of s,, containing x will either
be k-simplices of s,,_, that do not intersect M, or barycentric subdivisions of
those that did, hence k-simplices of Sd™(s). In either situation it follows that
the k-simplices of s,, that contain x will be disjoint from M.

Therefore, in each s;, j > m, the triangulation about x remains constant. In
this way we define the triangulation of s — M. O

We now want to use this triangulation to define inductively a collection of
subsets Ng © N, € --- © N, = N of s together with a map r: N — M. Initially
we take N, to be the union of M with all the vertices of s — M. If ye M,
define r(y) = y. If x4 is a vertex of s — M, define r(x,) to be some point of M
for which dist(xg, r(xq)) = dist(xq, M).

Suppose then that N,_; and r: N;_;, - M have been defined. Let « be a



Appendix 11 221

closed i-simplex in s — M; a will be contained in N, if both of the following
requirements are satisfied:

(a) the boundary of « is contained in N,_,;
(b) the map r: du — M can be extended continuously over a.

The space N, will be the union of N;_, together with all such closed i-simplices
o To define r: N;—» M it is sufficient to define r on each « so that it is
compatible with the previous definition on the boundary. Let

A = {d € R|thereis amap f:a - M, f|, = r, and diam(image f) = 5}

For « an i-simplex in N;, A4 is a nonempty set that is bounded below. Let a be
the greatest lower bound for A. Now define r: « — M by choosing a map that
extends the restriction of r to d« and satisfies a < diam(r(«)) < 2a. Note that
ifa = 0, we may take r to be the constant map taking « into r(dx).

This completes the inductive step so that N = N, is a well-defined subset of
s containing M and r: N - M is a function which is the identity on M. It
remains to be shown that r is continuous and N is a neighborhood of M in
R*. First we present some preliminary lemmas.

IL.3 Lemma. For any ¢ > O there exists a 6 > 0 such that if x is a point of
s — M and dist(x, M) < 4, then the mesh of the set of k-simplices of s — M
containing x is less than .

Proof. Let ¢ > 0; choose a positive integer m so that (k/(k + 1))"-diam(s) < .
Define K, to be the union of all closed k-simplices of s,, that do not intersect
M. K,, is a compact subset of s.

Let § = dist(M,K,,), or, if K,, is empty, take o = 1. Then if dist(x, M) < §,
each closed k-simplex of s, that contains x must intersect M. Thus, each of
these simplices must lie in Sd™(s) and their mesh is less than or equal to mesh
Sd™(s) < (k/(k + 1))"-diam s < ¢. The same inequality will obviously be true
for the set of k-simplices of s — M containing x. O

IL4 Lemma. If € is a p-simplex, K is a convex set, and f: 0& — K is a map,
then f can be extended over all of S.

Proof. Let b(S) be the barycenter of © and select a point w € K. Every point
x of € has a unique representation in the form x =ty + (1 — t)- b(S), where
y is a point of € and 0 < ¢ < 1. For each such point x define

J) =t f(y)+ A -w.
This is well defined since K is convex; f is continuous and extends the origi-

nal definition of f on & O

IL5 Corollary. If S is a p-simplex and B is a proper n-ball in a topological
manifold, then any map f: 0E — B can be extended over all of S.
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Proof. Since B is a proper n-ball, there is a homeomorphism
h:B-D"— §"!,

a convex subset of R". We may compose f with 4 and apply Lemma I1.4 to
give the desired extension. O

IL.6 Theorem. The function r: N - M defined previously is a continuous re-
traction of a neighborhood of M in R* onto M.

Proof. From the construction of r it is apparent that r is continuous at each
point of s — M. Thus, it is sufficient to check continuity at a point y € M. So
let ¢ > 0 and denote by B(y, &) the ball of radius ¢ about y = r(y) in R~

We construct inductively a collection of open sets Vy, V,, ..., V., in R*
about y. Let V, = B(y,¢). For the inductive step, suppose that V,_; has been
defined. Let V] be an open subset of V_, in R* containing y having the
following properties:

(i) V, € B(y,9,), where B(y,56) < V,_y;
(i) ¥, M is a proper n-ball about y;
(iii) if x € ¥, — M, then the mesh of the set of k-simplices of s — M containing
xis <9,

That Requirement (iii) may be satisfied follows from Lemma IL.3.
Now let x € V., an open set about y. If x e M, then

r(x) = xe Vy = B(y,¢).

So suppose x ¢ M and let & be a k-simplex of s — M containing x.

By Requirements (iii) and (i) all of the vertices of € must lie in ¥, and must
be mapped by r into the proper n-ball ¥, n M. By Corollary IL5 each 1-
simplex « in € admits a map into ¥, » M extending the restriction of r to da.
Thus, each set « is contained in N. Furthermore, since the diameter of the
image of this extension is less than 24,, the diameter of r(x) must be less than
45,. The fact that r(«) intersects ¥, n M, together with Requirement (i), im-
plies that r(x) < V,_, n M.

Thus, the image of the 1-skeleton of & under ris contained in V,_;, "M, a
proper n-ball. We may now apply the same argument to the 2-simplices of €.
Continuing inductively, we find that the image of the k-skeleton of € under
r, that is, r(&), is contained in V,_, = V, = B(y, ¢). In particular r(x) € B(y, ¢)
and r is continuous at y.

To see that N is a neighborhood of M in R¥ note that in the above
argument, V,,, is an open set about y € M on which r is completely defined.
Hence, V,,; < N and y is an interior point of N. O

EXERCISE 1. Make the necessary modifications in the preceding proofs to show that
the results hold as well for compact manifolds with boundary.
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EXERCISE 2. Prove a similar imbedding and retraction theorem for noncompact
manifolds.

Finally, we turn to the collaring theorem for topological manifolds. As we
stated previously, the proof given here is an intuitively appealing one due to
Conelly [1971].

IL.7 Theorem (Topological collaring theorem). Let M" be a compact topolog-
ical manifold with boundary OM = B. Then there exists an open set U in M,
containing B, and a homeomorphism

h:U- B x[0,1)
such that h(x) = (x,0) for all xe B.

Proof. The idea of the proof is as follows. Since B = 0M we can find about
each point of B an open set which looks like a portion of a “collar”; that is, B
is locally collared in M. We attach a collar to the boundary of M and then
use the local collaring to push the added collar into the manifold (or pull the
manifold out over it), so that the added collar becomes the desired open set
U.

By using the topological properties of euclidean half-space H", we can
show that for any point x € B = ¢M there is an open set U, in B about x and
an imbedding

h:U x[0,1]-M
such that for any x’' € U,, h,(x’,0) = x". Now B is a closed subspace of the

compact manifold M; hence, B is compact and there exist a finite number of
open sets Uy, ..., U,, in B and imbeddings

h: U, x [0,1] > M
such that
hi(x,0) = x for all x in U,
and
B=JU.

Since B is compact Hausdorfl, it is also normal; hence, there exist open sets
Vi, ..., V, covering B such that V, < U, for each i.

Define M™ to be the,space formed from the union M v (B x [—1,0]) by
identifying x € B & M with (x,0) € B x [ —1,0] (Figure I1.3). For each i let

h:U x[=1,1]->M*

be the function given by
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hi(x,t) if 0<t<l1
(x,t) if —1<t<0.

h(x,t) = {

Since these agree on the intersection, each & is a well-defined imbedding.

We now use these maps h, to define inductively a family of imbeddings
geo M- M* and maps f;: B-»[—1,0], i=0, 1, 2, ..., m, satisfying the
following:

(@) g(M)contains M U ({ J;; ¥V, x [—1,0]);
(b) for any x € B, gi(x) = (x, fi(x));

© fulx)= -1,

(d) for any x e B, {x} x [fi(x),0] < g{(M).

The imbeddings g, correspond to the consecutive stages of pushing the
collar into the manifold while the functions f; keep track of the location of the
boundary of M at each stage. It follows that g,, will be a homeomorphism of
M with M* taking x € Bto (x, — 1) in M ™. This will give the desired collaring
of B.



Appendix 11 225

Define go: M — M™ to be the inclusion and set fy(B) = 0. Inductively, sup-
pose g;_, and f;_, have been defined. Consider

hi ' (gi-1(M)) = U x [—1,1]

(for example, the shaded region in Figure I1.4). We want to define an
imbedding

é:: hi_i(gi—1(M)) - Ui x [—1,1]

by pushing to the left along the fibers until ¢,(h;*(g:_,(V)))) = V; x {—1}, but
requiring that ¢; be the identity on (U, — U)) x [—1,1]u U; x {1}. Thus, ¢,
represents a “pushing out” operation inside this local collar which will not
affect the rest of the manifold.

To do this, we want a map A;: U; » [—1, 1] such that

{2+ 1 if xeV,
l'(x)_{q if xel— U

!

and A,(x) < 2f,_,(x) + 1 for all x € U,.

Since ¥, and U, — U, are disjoint closed subsets of a normal space, we can
find a map satisfying the stated condition on these two subspaces using the
Tietze extension theorem. Taking the minimum of this map and 2f,_,(x) + 1
produces the desired map 4,.

Now define ¢, by

_jx0 if L(x)<t<l
#0o0 = {(x,2t—l.~(x)) if fioi(x) <t < A(x).

The behavior of the map ¢, may be described as taking each interval {x} x
[3(4(x) — 1), 4,(x)] linearly onto {x} x [—1, 4,(x)], recalling that {(4,(x) — 1) <
fi—1(x) with equality holding on V, (Figure IL5).

We may now use ¢; to alter g;_, to produce g;. Specifically

Fixed by ¢, .
T -

Graph of \\\\ \

St < 3 i <
— — %
il ry

Graph of “ “

A, ] i 212_4

L4
-1 0 1

Figure I1.5
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(x) = (higihi g () i xegiy(M)nh(U; x [—1,1])
) = gi—,(x) otherwise.

Both g; and g;! are continuous. We define f;: B — [ —1,0] by setting fi(x) =

7(g,(x)) where 7 is the projection from B x [—1,0] onto the second factor.
This completes the induction step and the homeomorphism g,, gives the

required collaring of B. O
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This book is designed to be an introduction to some of the basic
ideas in the field of algebraic topology. In particular, it is devoted
to the foundations and applications of homology theory. The only
prerequisite for the student is a basic knowledge of abelian
groups and point sst topology. The assentials of singular homol-
ogy are given in the first chapter, along with some of the most
important applications. in this way the student can quickly see
the importance of the material. The successive topics include
attaching spaces, finite CW complexes, the Eilenberg-Steenrod
axioms, cohomoiogy products, manifokis, Poincaré duallty, and
fixed point theory. Throughout the book, the approach is as #Mus-
trative as possible, with numerous examples and diagrams.
Extremes of generality are sacrificed when they are likely to
obscure the essential concepts involved. The book is intended
to be easily read by students as a textbook for a course or as a
source for individual study. This second edition has been expand-
ed to include a new chapter on covering spaces, as well as addi-
tional iluminating exercises. The conceplual approach is again
used to show how lifting problems give rise 1o the fundamental
group and its properties.
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