Universitext

Ferdinand Verhulst

Nonlinear Differential Equations and Dynamical Systems

With 107 Figures

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Ferdinand Verhulst Department of Mathematics, University of Utrecht Budapestlaan 6, Postbus 80.010 NL-3508 TA Utrecht, The Netherlands

Title of the original Dutch edition Nietlineaire Differentiaalvergelijkingen en Dynamische Systemen Published by Epsilon Uitgaven, Utrecht 1985

Mathematics Subject Classification (1980): 34-02, 58F, 70K

ISBN-13:978-3-540-50628-7 e-ISBN-13:978-3-642-97149-5

DOI: 10.1007/978-3-642-97149-5

Library of Congress Cataloging-in-Publication Data Verhulst, F. (Ferdinand), 1939 – Nonlinear differential equations and dynamical systems / Ferdinand Verhulst.

p. cm. -- (Universitext). Includes bibliographical references.

ISBN 0-387-50628-4 (U.S. : alk. paper)

1. Differential equations, Nonlinear. 2. Differentiable dynamical systems. I. Title. QA372.V.47 1989 515'.355--dc20 89-21770

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1990

2141/3140-543210 - Printed on acid-free paper

Preface

This book was written originally in Dutch for Epsilon Uitgaven; the English version contains a number of corrections and some extensions, the largest of which are sections 11.6-7 and the exercises.

In writing this book I have kept two points in mind. First I wanted to produce a text which bridges the gap between elementary courses in ordinary differential equations and the modern research literature in this field. Secondly to do justice to the theory of differential equations and dynamical systems, one should present both the qualitative and quantitative aspects.

Thanks are due to a number of people. A.H.P. van der Burgh read and commented upon the first version of the manuscript; also the contents of section 10.2 are mainly due to him.

Many useful remarks have been made by B. van den Broek, J.J. Duistermaat, A. Doelman, W. Eckhaus, A. van Harten, E.M. de Jager, H.E. Nusse, J.W. Reyn and a number of students. Some figures were produced by E. van der Aa, B. van den Broek and I. Hoveijn. J. Grasman and H.E. Nusse kindly consented in the use of some figures from their publications.

The typing and TEX-editing of the text was carefully done by Diana Balk.

Writing this book was a very enjoyable experience. I hope that some of this pleasure is transferred to the reader when reading the text.

Utrecht April 1989 Ferdinand Verhulst

Contents

1	Introduction 1					
	1.1	Definitions and notation	1			
	1.2	Existence and uniqueness	3			
	1.3	Gronwall's inequality	5			
2	Autonomous equations 7					
	2.1	Phase-space, orbits	7			
	2.2	Critical points and linearisation	10			
	2.3	Periodic solutions	14			
	2.4	First integrals and integral manifolds	16			
	2.5		22			
	2.6		24			
3	Critical points 27					
	3.1		27			
	3.2		31			
	3.3		33			
	3.4		37			
4	Periodic solutions 39					
_	4.1		39			
	4.2		41			
	4.3		45			
	4.4	Applications of the Poincaré-Bendixson theorem	49			
	4.5	Periodic solutions in \mathbb{R}^n	55			
	4.6		60			
5	Introduction to the theory of stability 62					
	5.1		62			
	5.2	Stability of equilibrium solutions	64			
	5.2	Buabling of equilibrium bolusions	66			
	5.4	Stability of periodic solutions	70			
	5.4	Evergines	71			

6	Line	ear equations	73			
	6.1	Equations with constant coefficients	73			
	6.2	Equations with coefficients which have a limit	75			
	6.3	Equations with periodic coefficients	80			
	6.4	Exercises	85			
7	Stability by linearisation 8					
	7.1	Asymptotic stability of the trivial solution	88			
	7.2	Instability of the trivial solution				
	7.3	Stability of periodic solutions of autonomous equations	97			
	7.4	Exercises				
8	Stability analysis by the direct method 101					
	8.1	Introduction	101			
	8.2	Lyapunov functions				
	8.3	Hamiltonian systems and systems with first integrals				
	8.4	Applications and examples				
	8.5	Exercises	114			
9	Intr	oduction to perturbation theory	117			
	9.1	Background and elementary examples	117			
	9.2	Basic material				
	9.3	Naïve expansion	123			
	9.4	The Poincaré expansion theorem	126			
	9.5	Exercises	128			
10	The	Poincaré-Lindstedt method	130			
		Periodic solutions of autonomous second-order equations				
		Approximation of periodic solutions on arbitrary long time-scales				
	10.3	Periodic solutions of equations with forcing terms	138			
		The existence of periodic solutions				
	10.5	Exercises	143			
11	The	method of averaging	145			
	11.1	Introduction	145			
	11.2	The Lagrange standard form	148			
	11.3	Averaging in the periodic case	149			
	11.4	Averaging in the general case	154			
	11.5	Adiabatic invariants	157			
	11.6	Averaging over one angle, resonance manifolds	161			
		Averaging over more than one angle, an introduction				
		Periodic solutions				
		Exercises				

12 Relaxation oscillations	177		
12.1 Introduction	. 177		
12.2 The van der Pol-equation	. 178		
12.3 The Volterra-Lotka equations	. 180		
13 Bifurcation theory	183		
13.1 Introduction	. 183		
13.2 Normalisation			
13.3 Averaging and normalisation			
13.4 Centre manifolds	. 193		
13.5 Bifurcation of equilibrium solutions and Hopf bifurcation			
13.6 Exercises	. 201		
14 Chaos	204		
14.1 The Lorenz-equations	. 204		
14.2 A mapping associated with the Lorenz-equations	. 207		
14.3 A mapping of R into R as a dynamical system			
14.4 Results for the quadratic mapping	. 213		
15 Hamiltonian systems	218		
15.1 Summary of results obtained earlier	. 218		
15.2 A nonlinear example with two degrees of freedom	. 220		
15.3 The phenomenon of recurrence			
15.4 Periodic solutions			
15.5 Invariant tori and chaos			
15.6 The KAM theorem			
15.7 Exercises	. 234		
Appendix 1: The Morse lemma			
Appendix 2: Linear periodic equations with a small parameter	239		
Appendix 3: Trigonometric formulas and averages	241		
Answers and hints to the exercises	242		
References			