Mathematical Surveys and Monographs

Volume 97

Applied Picard–Lefschetz Theory

V. A. Vassiliev

American Mathematical Society

Editorial Board

Peter S. LandweberTudor Stefan RatiuMichael P. Loss, ChairJ. T. Stafford

2000 Mathematics Subject Classification. Primary 14D05, 14B05, 31B10, 32S40, 35B60; Secondary 33C70, 35L67.

Library of Congress Cataloging-in-Publication Data

Vasil'ev, V. A., 1956–
Applied Picard-Lefschetz theory / V. A. Vassiliev.
p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376; v. 97)
Includes bibliographical references and index.
ISBN 0-8218-2948-3 (alk. paper)
1. Picard-Lefschetz theory. 2. Singularities (Mathematics) 3. Integral representations.
I. Title. II. Mathematical surveys and monographs; no. 97.

 $\begin{array}{c} QA564.V37 \quad 2002 \\ 516.3'5 - - dc21 \end{array}$

2002066541

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

> © 2002 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America.

© The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 07 06 05 04 03 02

Contents

PREI	FACE	ix
INTF	RODUCTION	1
1.	Monodromy and its localization	1
2.	Newton's problem on the integrability of ovals	6
3.	Surface potentials	13
4.	Petrovskiĭ theory of lacunas for hyperbolic operators	18
5.	Hypergeometric integrals	22
Chap	ter I. LOCAL MONODROMY THEORY OF ISOLATED SINGULARITIES OF FUNCTIONS AND	
	COMPLETE INTERSECTIONS	29
1.	Gauß–Manin connection in homological bundles. Monodromy and	
	variation operators	29
2.	Picard–Lefschetz formula	32
3.	Monodromy theory of isolated function singularities	37
4.	Dynkin diagrams of real singularities of functions of two variables	
	(after S.M. Gusein-Zade and N. A'Campo)	51
5.	Classification of singularities of smooth functions	56
6.	Lyashko–Looijenga covering	62
7.	Complements of discriminants of real simple singularities (after E. Looijenga)	65
8.	Pham singularities	67
9.	Singularities and local monodromy of complete intersections	71
Chap	ter II. STRATIFIED PICARD–LEFSCHETZ THEORY AND	
	MONODROMY OF HYPERPLANE SECTIONS	75
1.	Stratifications of semianalytic and subanalytic sets	76
2.	Monodromy of hyperplane sections	79
3.	Simplest facts on intersection homology theory	89
4.	Stratified Picard–Lefschetz theory	91
Chap	ter III. NEWTON'S THEOREM ON THE NON-INTEGRABILITY	
-	OF OVALS	111
1.	Introduction	111
2.	Reduction to monodromy theory	117
3.	The class "cap"	119
4.	Ramification of integration chains at non-singular points	121
5.	Examples	124

CONTENTS	
----------	--

6.	Obstructions to integrability arising from cuspidal edges. Proof of Theorem 1.8	126
7.	Ramification close to asymptotic hyperplanes. Proof of Theorem	120
••	1.9	133
8.	Open problems	136
Chapt	er IV. LACUNAS AND LOCAL PETROVSKII CONDITION	
	FOR HYPERBOLIC DIFFERENTIAL OPERATORS	107
1	WITH CONSTANT COEFFICIENTS	137
1.	Introduction	137
2.	Hyperbolic polynomials	140
3.	Hyperbolic operators and hyperbolic polynomials. Sharpness,	140
4	diffusion, and lacunas	142
4.	Generating functions and generating families of wave fronts.	140
۲	Classification of singular points of wave fronts	146
5.	Local lacunas close to non-singular points of fronts and close to	
	singular points of types A_2 and A_3 (after Davydova, Borovikov	140
C	and Gårding) Detrouvelik and Lange coolee. Handlate Detrouvelik Lange formula	149
6.	Petrovskiĭ and Leray cycles. Herglotz–Petrovskiĭ–Leray formula.	151
7	Petrovskiĭ condition for global lacunas	151
7.	Local Petrovskiĭ condition and local Petrovskiĭ cycle. Local	155
0	Petrovskiĭ condition implies sharpness	155
8.	Sharpness implies the local Petrovskiĭ condition close to the finite	150
0	type points of wave fronts	159
9.	Local Petrovskiĭ condition can be stronger than sharpness	162
10.		100
11	(after A.N. Varchenko)	162
11.	Problems	164
Chapt	er V. CALCULATION OF LOCAL PETROVSKII CYCLES	
1	AND ENUMERATION OF LOCAL LACUNAS CLOSE	
	TO REAL SINGULARITIES	165
1.	Main theorems	165
2.	Local lacunas close to table singularities	174
3.	Calculation of the even local Petrovskiĭ class	182
4.	Calculation of the odd local Petrovskiĭ class	187
5.	Stabilization of local Petrovskiĭ classes	191
6.	Local lacunas close to simple singularities	192
7.	Geometric characterization of local lacunas at simple singularities	207
8.	A program enumerating topologically distinct morsifications of	
	real function singularities	209
Chapt	ter VI. HOMOLOGY OF LOCAL SYSTEMS, TWISTED	
	MONODROMY THEORY, AND REGULARIZATION	
	OF IMPROPER INTEGRATION CYCLES	215
1.	Local systems and their homology groups	215
2.	Twisted vanishing homology of functions and complete intersections	218
3.	Regularization of non-compact cycles	224
4.	The "double loop" cycle	226
5.	Monodromy of twisted vanishing homology for Pham singularities	234

vi

6.	Stratified Picard–Lefschetz theory with twisted coefficients
0.	·
Chap	ter VII. ANALYTIC PROPERTIES
	OF SURFACE POTENTIALS
1.	Introduction
2.	Theorems of Newton and Ivory
3.	Hyperbolic potentials are regular in the hyperbolicity domain
	(after V.I. Arnold and A.B. Givental)
4.	Reduction to monodromy theory
5.	Ramification of potentials and monodromy of complete intersections
6.	Examples: curves, quadrics, and Ivory's second theorem
7.	Description of the small monodromy group
8.	Proof of Theorem 1.4
9.	Proof of Theorem 1.3
Chap	ter VIII. MULTIDIMENSIONAL HYPERGEOMETRIC
- 1	FUNCTIONS, THEIR RAMIFICATION,
	SINGULARITIES, AND RESONANCES
1.	Introduction
2.	Proof of the meromorphy theorem
3.	The hypergeometric function and its one-dimensional generalizations
4.	Homology of complements of plane arrangements. Basic strata
5.	The number of independent hypergeometric integrals on basic strata
Biblic	ography
Index	