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Preface 

In this book I present, in a systematic form, some local theorems on 
existence, uniqueness, and analytic dependence on the load, which I have 
recently obtained for some types of boundary value problems of finite 
elasticity. Actually, these results concern an n-dimensional (n ~ 1) formal 
generalization of three-dimensional elasticity. Such a generalization, be­
sides being quite spontaneous, allows us to consider a great many inter­
esting mathematical situations, and sometimes allows us to clarify certain 
aspects of the three-dimensional case. Part of the matter presented is 
unpublished; other arguments have been only partially published and in 
lesser generality. Note that I concentrate on simultaneous local existence 
and uniqueness; thus, I do not deal with the more general theory of exis­
tence. Moreover, I restrict my discussion to compressible elastic bodies 
and I do not treat unilateral problems. The clever use of the inverse 
function theorem in finite elasticity made by STOPPELLI [1954, 1957a, 
1957b], in order to obtain local existence and uniqueness for the traction 
problem in hyperelasticity under dead loads, inspired many of the ideas 
which led to this monograph. 

Chapter I aims to give a very brief introduction to some general 
concepts in the mathematical theory of elasticity, in order to show how 
the boundary value problems studied in the sequel arise. 

Chapter II is very technical; it supplies the framework for all sub­
sequent developments. Theorems on continuity, differentiability, and ana­
lyticity for composition operators are established in this chapter; they 
will suggest the later choices of the spaces for solutions and data. From 
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Theorem 6.1 it follows, for example, that to study our nonlinear prob­
lems using the implicit function theorem, the Sobolev spaces connected 
with a weak formulation of its (formally) linearized problems do not 
work. Thus we need appropriate regularity theorems for linear boundary 
value problems with a rather mild smoothness of some coefficients. The 
main object of Chapter III is precisely to provide such regularity 
theorems. 

Subsequent chapters are devoted to obtaining theorems of existence, 
uniqueness, and analytic dependence on the load, near special deforma­
tions, for boundary value problems of place (in Chapter IV) and traction 
(in Chapters V and VI) in finite elastostatics. Loads independent of the 
deformation (dead loads) and loads depending on the deformation (live 
loads) are both considered. For the problem of place under dead loads 
some "semiglobal" results are also given. Evidently, a reasonable depen­
dence of the load on the deformation, while not creating serious difficul­
ties for the boundary condition of place, gives rise to a very wide variety 
of boundary value problems, with difficulties of every kind when we deal 
with the traction problem. On the other hand, for the traction problem, 
any physically realistic load depends (nontrivially) on the deformation. 

In Chapter V, I present an abstract method of attacking the traction 
problem with general loads when certain conditions are satisfied: this 
method leads to an abstract theorem of existence, uniqueness, and analytic 
dependence on a parameter (Theorem 5.1). A first application of this 
theorem is given in the second part of Chapter V in treating the case of 
dead loads. Two more applications of that abstract theorem are made in 
Chapter VI, where a very important class of traction problems is studied: 
namely, those in which the prescribed surface traction is parallel to the 
normal of the boundary of the unknown deformed equilibrium configura­
tion. Within this class there are boundary value problems to which the 
abstract method of Chapter V does not apply. One of these is particularly 
interesting and realistic: that is, the boundary value problem arising from 
the study of the equilibrium of a heavy elastic body submerged in a 
quiet, homogeneous, heavy liquid. 

Most of Chapter VI is devoted to (the n-dimensional version of) this 
boundary value problem. The main result of the book is a theorem of 
existence, uniqueness, and analytic dependence on a parameter for this 
problem, near suitable deformations (see Theorem 4.17). I believe that 
some key ideas devised in proving this theorem may suggest a way of 
attacking boundary value problems of traction different from those dis­
cussed here. Moreover, I note that in traction problems, the particular 
deformations near to which I find existence, uniqueness, and analytic 
dependence on a parameter are unstressed; but, bearing in mind the 
analysis of BHARATHA & LEVINSON [1978], CAPRIZ & PODIO-GUIDUGLI 
[1979], and WAN & MARSDEN [1983], we can realize how the meth-
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odologies presented here can be adapted in order to study traction 
boundary value problems near stressed deformations. 

Of course, the methods and results of this book have a quite different 
character from those based on the calculus of variations and the search 
for suitable constitutive assumptions (such as polyconvexity of the stored­
energy function assumed by BALL [1977]). Rather, they may be useful as 
a first step in a global approach to boundary value problems of finite 
elasticity. 

I conclude by expressing my gratitude to Professor C. TRUESDELL for 
inviting me to write this monograph. 

Padova 
January 1987 

TuLLIO VALENT 
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