Mathematical World

Volume 19

A Mathematical Gift, I

The interplay between topology, functions, geometry, and algebra

Kenji Ueno Koji Shiga Shigeyuki Morita

Translated by Eiko Tyler

Contents

Preface	vii
Chapter 1. Invitation to Topology (Viewing Figures Globally)	1
Introduction	
 Lecture 1. The Euler Characteristic 1.1. The Euler Characteristic of a Square 1.2. The Euler Characteristic of a Sphere and of a Torus 1.3. Closed Surfaces 1.4. Closed Surfaces and Their Euler Characteristics 	5 5 8 12 18
 Lecture 2. Vortices Created by Winds and the Euler Characteristic 2.1. Directions of Winds and Centers of Vortices (Vector Fields and Critical Points) 2.2. The Index of a Critical Point 2.3. The Poincaré–Hopf Theorem 2.4. Proof of the Poincaré–Hopf Theorem 	25 25 28 30 35
 Lecture 3. Curvature of a Surface and the Euler Characteristic 3.1. Ellipses, Parabolas, and Hyperbolas 3.2. Tangent Planes and Curved Surfaces 3.3. Curvature and the Gauss Map 3.4. Gaussian Curvatures 3.5. The Gauss–Bonnet Theorem 3.6. Surfaces of Constant Curvature 	$\begin{array}{c} 43\\ 43\\ 46\\ 52\\ 58\\ 60\\ 69\end{array}$
Chapter 2. The Story of Dimension	
Introduction	77
Lecture 1. Learning to Appreciate Dimension 1.1. Seeing Is Not Believing 1.2. Peano Curve	79 79 83
Lecture 2. What is Dimension?	89

v

,

CONTENTS

2.1.	Poincaré's Idea	89
2.2.	Lines, Planes, and Spaces	93
2.3.	Surfaces in Four-Dimensional Space	104
Lecture	3. Three-Dimensional Figures	107
3.1.	Three-Dimensional Spheres	107
3.2.	General Three-Dimensional Figures	112
Append	ix. Physics and Dimension	129
A.1.	Newtonian Mechanics	129
A.2.	Geometry Describing Space	131
A.3.	From Newtonian Mechanics to Relativity	132
A.4.	Quantum Mechanics and Quantum Field Theory	134
A.5.	Superstring Theory and Ten-Dimensional Space-Time	135

. . .

 $\mathbf{v}\mathbf{i}$