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Preface 

Although the calculus of variations has ancient origins in questions of Ar
istotle and Zenodoros, its mathematical principles first emerged in the post
calculus investigations of Newton, the Bernoullis, Euler, and Lagrange. Its 
results now supply fundamental tools of exploration to both mathematicians 
and those in the applied sciences. (Indeed, the macroscopic statements ob
tained through variational principles may provide the only valid mathemati
cal formulations of many physical laws.) Because of its classical origins, 
variational calculus retains the spirit of natural philosophy common to most 
mathematical investigations prior to this century. The original applications, 
including the Bernoulli problem of finding the brachistochrone, require opti
mizing (maximizing or minimizing) the mass, force, time, or energy of some 
physical system under various constraints. The solutions to these problems 
satisfy related differential equations discovered by Euler and Lagrange, and 
the variational principles of mechanics (especially that of Hamilton from the 
last century) show the importance of also considering solutions that just 
provide stationary behavior for some measure of performance of the system. 
However, many recent applications do involve optimization, in particular, 
those concerned with problems in optimal control. 

Optimal control is the rapidly expanding field developed during the last 
half-century to analyze optimal behavior of a constrained process that 
evolves in time according to prescribed laws. Its applications now embrace a 
variety of new disciplines, including economics and production planning.l In 

1 Even the perennial question of how a falling cat rights itself in midair can be cast as a control 
problem in geometric robotics! See Dynamics and Control of Mechanical Systems: The Falling 
Cat and Related Problems, by Michael Enos, Ed. American Mathematical Society, 1993. 
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viii Preface 

this text we will view optimal control as a special form of variational calculus, 
although with proper interpretation, these distinctions can be reversed. 

In either field, most initial work consisted of finding (necessary) conditions 
that characterize an optimal solution tacitly assumed to exist. These condi
tions were not easy to justify mathematically, and the subsequent theories 
that gave (sufficient) conditions guaranteeing that a candidate solution does 
optimize were usually substantially harder to implement. (Conditions that 
ensure existence of an optimizing solution were-and are-far more difficult 
to investigate, and they cannot be considered at the introductory level of this 
text. See [Ce].) Now, in any of these directions, the statements of most later 
theoretical results incorporate some form of convexity in the defining func
tions (at times in a disguised form). Of course, convexity was to be expected 
in view of its importance in characterizing extrema of functions in ordinary 
calculus, and it is natural to employ this central theme as the basis for an 
introductory treatment. 

The present book is both a refinement and an extension of the author's 
earlier text, Variational Calculus with Elementary Convexity (Springer-Verlag, 
1983) and its supplement, Optimal Control with Elementary Convexity (1986). 
It is addressed to the same audience of junior to first-year graduate students 
in the sciences who have some background in multidimensional calculus and 
differential equations. The goal remains to solve problems completely (and 
exactly) whenever possible at the mathematical level required to formulate 
them. To help achieve this, the book incorporates a sliding scale-of-difficulty 
that allows its user to become gradually more sophisticated, both technically 
and theoretically. The few starred (*) sections, examples, and problems out
side this scheme can usually be overlooked or treated lightly on first reading. 

For our purposes, a convex function is a differentiable real-valued func
tion whose graph lies above its tangent planes. In application, it may be 
enough that a function of several variables have this behavior only in some 
of the variables, and such "elementary" convexity can often be inferred 
through pattern recognition. Moreover, with proper formulation, many more 
problems possess this convexity than is popularly supposed. In fact, using 
only standard calculus results, we can solve most of the problems that moti
vated development of the variational calculus, as well as many problems of 
interest in optimal control. 

The paradigm for our treatment is as follows: Elementary convexity sug
gests simple sufficiency conditions that can often lead to direct solution, and 
they in turn inform the search for necessary conditions that hold whether or 
not such convexity is present. For problems that can be formulated on a fixed 
interval (or set) this statement remains valid even when fixed-endpoint condi
tions are relaxed, or certain constraints (isoperimetric or Lagrangian) are 
imposed. Moreover, sufficiency arguments involving elementary convexity 
are so natural that even multidimensional generalizations readily suggest 
themselves. 
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In Part I, we provide the standard results of variational calculus in the 
context of linear function spaces, together with those in Chapter 3 that use 
elementary convexity to establish sufficiency. In Part II, we extend this devel
opment into more sophisticated areas, including Weierstrass-Hilbert field 
theory of sufficiency (Chapter 9). We also give an introduction to Hamil
tonian mechanics and use it in §8.8 to motivate a different means for recog
nizing convexity, that leads to new elementary solutions of some classical 
problems (including that ofthe brachistochrone). Throughout these parts, we 
derive and solve many optimization problems of physical significance in
cluding some involving optimal controls. But we postpone our discussion of 
control theory until Part III, where we use elementary convexity to suggest 
sufficiency of the Pontjragin principle before establishing its necessity in the 
concluding chapter. 

Most of this material has been class-tested, and in particular, that of Part 
I has been used at Syracuse University over 15 years as the text for one 
semester of a year-sequence course in applied mathematics. Chapter 8 (on 
Hamiltonian mechanics) can be examined independently of adjacent chap
ters, but Chapter 7 is prerequisite to any other subsequent chapters. On the 
other hand, those wishing primarily an introduction to optimal control could 
omit both Chapters 8 and 9. The book is essentially self-contained and 
includes in Chapter 0 a review of optimization in Euclidean space. It does not 
employ the Lebesque integral, but in the Appendix we develop some neces
sary results about analysis in Euclidean space and families of solutions to 
systems of differential equations. 
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