Undergraduate Texts in Mathematics

Editors S. Axler F.W. Gehring P.R. Halmos

Springer Science+Business Media, LLC

Undergraduate Texts in Mathematics

Angline Mathematica, A Canaisa History	Flowdie Introduction to Difference
Anglin: Mathematics: A Concise History and Philosophy.	Elaydi: Introduction to Difference
	Equations.
Readings in Mathematics.	Fischer: Intermediate Real Analysis.
Anglin/Lambek: The Heritage of Thales.	Flanigan/Kazdan: Calculus Two: Linear and Nonlinear Functions. Second
Readings in Mathematics.	edition.
Apostol: Introduction to Analytic	
Number Theory. Second edition.	Fleming: Functions of Several Variables.
Armstrong: Basic Topology.	Second edition.
Armstrong: Groups and Symmetry.	Foulds: Combinatorial Optimization for
Bak/Newman: Complex Analysis.	Undergraduates.
Banchoff/Wermer: Linear Algebra	Foulds: Optimization Techniques: An
Through Geometry. Second edition.	Introduction.
Berberian: A First Course in Real	Franklin: Methods of Mathematical
Analysis.	Economics.
Brémaud: An Introduction to	Hairer/Wanner: Analysis by Its History.
Probabilistic Modeling.	Readings in Mathematics.
Bressoud: Factorization and Primality	Halmos: Finite-Dimensional Vector
Testing.	Spaces. Second edition.
Bressoud: Second Year Calculus.	Halmos: Naive Set Theory.
Readings in Mathematics.	Hämmerlin/Hoffmann: Numerical
Brickman: Mathematical Introduction	Mathematics.
to Linear Programming and Game	Readings in Mathematics.
Theory.	Iooss/Joseph: Elementary Stability and
Browder: Mathematical Analysis:	Bifurcation Theory. Second edition.
An Introduction.	Isaac: The Pleasures of Probability.
Cederberg: A Course in Modern	Readings in Mathematics.
Geometries.	James: Topological and Uniform Spaces.
Childs: A Concrete Introduction to	Jänich: Linear Algebra.
Higher Algebra. Second edition.	Jänich: Topology.
Chung: Elementary Probability Theory	Kemeny/Snell: Finite Markov Chains.
with Stochastic Processes. Third	Kinsey: Topology of Surfaces.
edition.	Klambauer: Aspects of Calculus.
Cox/Little/O'Shea: Ideals, Varieties,	Lang: A First Course in Calculus. Fifth
and Algorithms.	edition.
Croom: Basic Concepts of Algebraic	Lang: Calculus of Several Variables.
Topology.	Third edition.
Curtis: Linear Algebra: An Introductory	Lang: Introduction to Linear Algebra.
Approach. Fourth edition.	Second edition.
Devlin: The Joy of Sets: Fundamentals	Lang: Linear Algebra. Third edition.
of Contemporary Set Theory. Second	Lang: Undergraduate Algebra. Second
edition.	edition.
Dixmier: General Topology.	Lang: Undergraduate Analysis.
Driver: Why Math?	Lax/Burstein/Lax: Calculus with
Ebbinghaus/Flum/Thomas:	Applications and Computing.
Mathematical Logic. Second edition.	Volume 1.
Edgar: Measure, Topology, and Fractal	LeCuyer: College Mathematics with
Geometry.	APL.
	(continued after index)

John L. Troutman

Variational Calculus and Optimal Control

Optimization with Elementary Convexity

Second Edition

With 87 Illustrations

John L. Troutman Department of Mathematics Syracuse University Syracuse, NY 13210 USA

Editorial Board:

Sheldon Axler Department of Mathematics Michigan State University East Lansing, MI 48824 USA

Paul R. Halmos Department of Mathematics Santa Clara University Santa Clara, CA 95053 USA F.W. Gehring Department of Mathematics University of Michigan Ann Arbor, MI 48109 USA

Mathematics Subject Classifications (1991): 49-01

Library of Congress Cataloging-in-Publication Data Troutman, John L. Variational calculus and optimal control: Optimization with elementary convexity / John L. Troutman. 2nd edition. p. cm. — (Undergraduate texts in mathematics. Readings in mathematics.) Includes bibliographical references and index. ISBN 978-1-4612-6887-1 ISBN 978-1-4612-0737-5 (eBook) DOI 10.1007/978-1-4612-0737-5 1. Calculus of variations. 2. Control theory. 3. Mathematical optimization. 4. Convex functions. I. Title. II. Series. QA315.T724 1995 515'.64—dc20 95-12918

Printed on acid-free paper.

© 1996, 1983 Springer Science+Business Media New York

Originally published by Springer-Verlag New York, Inc in 1996, 1983

Softcover reprint of the hardcover 2nd edition 1996, 1983

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC,

except for brief excerpts in connection with reviews or scholarly

analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production coordinated by Brian Howe and managed by Henry Krell; manufacturing supervised by Jeffrey Taub.

Typeset by Asco Trade Typesetting Ltd., Hong Kong.

987654321

ISBN 978-1-4612-6887-1

This book is dedicated to my parents and to my teachers

Preface

Although the calculus of variations has ancient origins in questions of Aristotle and Zenodoros, its mathematical principles first emerged in the postcalculus investigations of Newton, the Bernoullis, Euler, and Lagrange. Its results now supply fundamental tools of exploration to both mathematicians and those in the applied sciences. (Indeed, the macroscopic statements obtained through variational principles may provide the only valid mathematical formulations of many physical laws.) Because of its classical origins, variational calculus retains the spirit of natural philosophy common to most mathematical investigations prior to this century. The original applications, including the Bernoulli problem of finding the brachistochrone, require optimizing (maximizing or minimizing) the mass, force, time, or energy of some physical system under various constraints. The solutions to these problems satisfy related differential equations discovered by Euler and Lagrange, and the variational principles of mechanics (especially that of Hamilton from the last century) show the importance of also considering solutions that just provide stationary behavior for some measure of performance of the system. However, many recent applications do involve optimization, in particular, those concerned with problems in optimal control.

Optimal control is the rapidly expanding field developed during the last half-century to analyze optimal behavior of a constrained process that evolves in time according to prescribed laws. Its applications now embrace a variety of new disciplines, including economics and production planning.¹ In

¹ Even the perennial question of how a falling cat rights itself in midair can be cast as a control problem in geometric robotics! See *Dynamics and Control of Mechanical Systems*: The Falling Cat and Related Problems, by Michael Enos, Ed. American Mathematical Society, 1993.

this text we will view optimal control as a special form of variational calculus, although with proper interpretation, these distinctions can be reversed.

In either field, most initial work consisted of finding (necessary) conditions that characterize an optimal solution tacitly assumed to exist. These conditions were not easy to justify mathematically, and the subsequent theories that gave (sufficient) conditions guaranteeing that a candidate solution does optimize were usually substantially harder to implement. (Conditions that ensure existence of an optimizing solution were—and are—far more difficult to investigate, and they cannot be considered at the introductory level of this text. See [Ce].) Now, in any of these directions, the statements of most later theoretical results incorporate some form of convexity in the defining functions (at times in a disguised form). Of course, convexity was to be expected in view of its importance in characterizing extrema of functions in ordinary calculus, and it is natural to employ this central theme as the basis for an introductory treatment.

The present book is both a refinement and an extension of the author's earlier text, *Variational Calculus with Elementary Convexity* (Springer-Verlag, 1983) and its supplement, *Optimal Control with Elementary Convexity* (1986). It is addressed to the same audience of junior to first-year graduate students in the sciences who have some background in multidimensional calculus and differential equations. The goal remains to solve problems completely (and exactly) whenever possible at the mathematical level required to formulate them. To help achieve this, the book incorporates a sliding scale-of-difficulty that allows its user to become gradually more sophisticated, both technically and theoretically. The few starred (*) sections, examples, and problems outside this scheme can usually be overlooked or treated lightly on first reading.

For our purposes, a convex function is a differentiable real-valued function whose graph lies above its tangent planes. In application, it may be enough that a function of several variables have this behavior only in some of the variables, and such "elementary" convexity can often be inferred through pattern recognition. Moreover, with proper formulation, many more problems possess this convexity than is popularly supposed. In fact, using only standard calculus results, we can solve most of the problems that motivated development of the variational calculus, as well as many problems of interest in optimal control.

The paradigm for our treatment is as follows: Elementary convexity suggests simple sufficiency conditions that can often lead to direct solution, and they in turn inform the search for necessary conditions that hold whether or not such convexity is present. For problems that can be formulated on a fixed interval (or set) this statement remains valid even when fixed-endpoint conditions are relaxed, or certain constraints (isoperimetric or Lagrangian) are imposed. Moreover, sufficiency arguments involving elementary convexity are so natural that even multidimensional generalizations readily suggest themselves. Preface

In Part I, we provide the standard results of variational calculus in the context of linear function spaces, together with those in Chapter 3 that use elementary convexity to establish sufficiency. In Part II, we extend this development into more sophisticated areas, including Weierstrass-Hilbert field theory of sufficiency (Chapter 9). We also give an introduction to Hamiltonian mechanics and use it in §8.8 to motivate a different means for recognizing convexity, that leads to new elementary solutions of some classical problems (including that of the brachistochrone). Throughout these parts, we derive and solve many optimization problems of physical significance including some involving optimal controls. But we postpone our discussion of control theory until Part III, where we use elementary convexity to suggest sufficiency of the Pontjragin principle before establishing its necessity in the concluding chapter.

Most of this material has been class-tested, and in particular, that of Part I has been used at Syracuse University over 15 years as the text for one semester of a year-sequence course in applied mathematics. Chapter 8 (on Hamiltonian mechanics) can be examined independently of adjacent chapters, but Chapter 7 is prerequisite to any other subsequent chapters. On the other hand, those wishing primarily an introduction to optimal control could omit both Chapters 8 and 9. The book is essentially self-contained and includes in Chapter 0 a review of optimization in Euclidean space. It does not employ the Lebesque integral, but in the Appendix we develop some necessary results about analysis in Euclidean space and families of solutions to systems of differential equations.

Acknowledgments

I wish once more to express my appreciation to those who first made me aware of the elegance and power of variational methods—Daniel Frederick at V.P.I., M.M. Schiffer at Stanford, and C. Lanczos as author. I must also reacknowledge the contributions that William Hrusa (now at Carnegie-Mellon University) made to the earlier work during his student days. Many of the problems in Part I and II originated with Bill, and his assistance and commentary during that initial production were invaluable. It has been rewarding to hear from those including Terry Rockafellar at the University of Washington, Frank Chorlton at the University of Aston, and Morris Kline at New York University, whose satisfaction with the earlier work helped motivate this extension.

I wish also to express my gratitude to Phil Loewen at the University of British Columbia and Frank Clarke at the Université de Montréal, as well as to Dan Waterman, my friend and colleague at Syracuse, for their suggestions and encouragement. Many thanks are due my other colleagues, especially Gerry Cargo, Phil Church, Phil Griffin, Wolfgang Jurkat, Tadeusz Iwaniec, and Andy Vogel, who taught from this material at Syracuse and made valuable suggestions for its improvement. And of course, I feel deep gratitude to and for my many students over the years, without whose evident enjoyment and expressed appreciation the current work would not have been undertaken. It is a pleasure to recognize those responsible for transforming this work from manuscript to printed page: the principal typists, Louise Capra, Esther Clark, and Steve Everson; the editors and staff at Springer-Verlag, in particular, Jenny Wolkowicki and the late Walter Kauffmann-Bühler. Finally, I wish to thank my wife, Patricia Brookes, for her patience and understanding during the years of revision.

Syracuse, New York

JOHN L. TROUTMAN

Contents

Prefa	ace	vii
CHA	PTER 0	
Revi	ew of Optimization in \mathbb{R}^d	1
	Problems	7
PAF	RT ONE	
	SIC THEORY	11
CHA	PTER 1	
Stan	dard Optimization Problems	13
1.1.	Geodesic Problems	13
	(a) Geodesics in \mathbb{R}^d	14
	(b) Geodesics on a Sphere	15
	(c) Other Geodesic Problems	17
1.2.	Time-of-Transit Problems	17
	(a) The Brachistochrone	17
	(b) Steering and Control Problems	20
	Isoperimetric Problems	21
1.4.		24
	(a) Minimal Surface of Revolution	24
	(b) Minimal Area Problem	25
	(c) Plateau's Problem	26
1.5.	j	26
	Notation: Uses and Abuses	29
	Problems	31

CHAPTER 2

Linea	ar Spaces and Gâteaux Variations	36
2.1.	Real Linear Spaces	36
2.2.	Functions from Linear Spaces	38
2.3.	Fundamentals of Optimization	39
	Constraints	41
	Rotating Fluid Column	42
2.4.	The Gâteaux Variations	45
	Problems	50

CHAPTER 3

Minir	mization of Convex Functions	53
3.1.	Convex Functions	54
3.2.	Convex Integral Functions	56
	Free End-Point Problems	60
3.3.	[Strongly] Convex Functions	61
3.4.	Applications	65
	(a) Geodesics on a Cylinder	65
	(b) A Brachistochrone	66
	(c) A Profile of Minimum Drag	69
	(d) An Economics Problem	72
	(e) Minimal Area Problem	74
3.5.	Minimization with Convex Constraints	76
	The Hanging Cable	78
	Optimal Performance	81
3.6.	Summary: Minimizing Procedures	83
	Problems	84

CHAPTER 4

The Lemmas of Lagrange and Du Bois-Reymond	97
Problems	101

CHAPTER 5

Local	Extrema in Normed Linear Spaces	103
5.1.	Norms for Linear Spaces	103
5.2.	Normed Linear Spaces: Convergence and Compactness	106
5.3.	Continuity	108
5.4.	(Local) Extremal Points	114
5.5.	Necessary Conditions: Admissible Directions	115
5.6*.	Affine Approximation: The Fréchet Derivative	120
	Tangency	127
5.7.	Extrema with Constraints: Lagrangian Multipliers	129
	Problems	139

CHAPTER 6	
The Euler-Lagrange Equations	145
6.1. The First Equation: Stationary Functions	147
6.2. Special Cases of the First Equation	148

	(a) When $f = f(z)$	149
	(b) When $f = f(x, z)$	149
	(c) When $f = f(y, z)$	150
6.3.	The Second Equation	153
6.4.	Variable End Point Problems: Natural Boundary Conditions	156
	Jakob Bernoulli's Brachistochrone	156
	Transversal Conditions*	157
6.5.	Integral Constraints: Lagrangian Multipliers	160
6.6.	Integrals Involving Higher Derivatives	162
	Buckling of a Column under Compressive Load	164
6.7.	Vector Valued Stationary Functions	169
	The Isoperimetric Problem	171
	Lagrangian Constraints*	173
	Geodesics on a Surface	177
6.8*.	Invariance of Stationarity	178
6.9.	Multidimensional Integrals	181
	Minimal Area Problem	184
	Natural Boundary Conditions	185
	Problems	186

PART TWO ADVANCED TOPICS

CHAPTER 7 Piecewise C^1 Extremal Functions 197 7.1. Piecewise C^1 Functions 198 (a) Smoothing 199 (b) Norms for \hat{C}^1 201 7.2. Integral Functions on \hat{C}^1 202 7.3. Extremals in $\hat{C}^{1}[a, b]$: The Weierstrass-Erdmann Corner Conditions 204 A Sturm-Liouville Problem 209 7.4. Minimization Through Convexity 211 Internal Constraints 212 7.5. Piecewise C^1 Vector-Valued Extremals 215 Minimal Surface of Revolution 217 Hilbert's Differentiability Criterion* 220 7.6*. Conditions Necessary for a Local Minimum 221 (a) The Weierstrass Condition 222 (b) The Legendre Condition 224 Bolza's Problem 225 Problems 227 **CHAPTER 8** Variational Principles in Mechanics 234

variationar i micipies in vicenames	
The Action Integral	235
Hamilton's Principle: Generalized Coordinates	236
Bernoulli's Principle of Static Equilibrium	239
	The Action Integral Hamilton's Principle: Generalized Coordinates

195

339

8.3.	The Total Energy	240
	Spring-Mass-Pendulum System	241
8.4.	The Canonical Equations	243
8.5.	Integrals of Motion in Special Cases	247
	Jacobi's Principle of Least Action	248
	Symmetry and Invariance	250
8.6.	Parametric Equations of Motion	250
8.7*.	The Hamilton–Jacobi Equation	251
8.8.	Saddle Functions and Convexity; Complementary Inequalities	254
	The Cycloid Is the Brachistochrone	257
	Dido's Problem	258
8.9.	Continuous Media	260
	(a) Taut String	260
	The Nonuniform String	264
	(b) Stretched Membrane	266
	Static Equilibrium of (Nonplanar) Membrane	269
	Problems	270
СНАР	TER 9*	
Suffic	ient Conditions for a Minimum	282
9.1.	The Weierstrass Method	283
9.2.	[Strict] Convexity of $f(\underline{x}, \underline{Y}, Z)$	286
9.3.	Fields	288
	Exact Fields and the Hamilton–Jacobi Equation*	293
9.4.	Hilbert's Invariant Integral	294
	The Brachistochrone*	296
	Variable End-Point Problems	297
9.5.	Minimization with Constraints	300
	The Wirtinger Inequality	304
9.6*.	Central Fields	308
	Smooth Minimal Surface of Revolution	312
9.7.	Construction of Central Fields with Given Trajectory:	
	The Jacobi Condition	314
9.8.	Sufficient Conditions for a Local Minimum	319
	(a) Pointwise Results	320
	Hamilton's Principle	320
	(b) Trajectory Results	321
9.9*.	Necessity of the Jacobi Condition	322
9.10.	Concluding Remarks	327
	Problems	329

PART THREE OPTIMAL CONTROL

CHAPTER 10*	
Control Problems and Sufficiency Considerations	341
10.1. Mathematical Formulation and Terminology	342

10.2.	Sample Problems	344
	(a) Some Easy Problems	345
	(b) A Bolza Problem	347
	(c) Optimal Time of Transit	348
	(d) A Rocket Propulsion Problem	350
	(e) A Resource Allocation Problem	352
	(f) Excitation of an Oscillator	355
	(g) Time-Optimal Solution by Steepest Descent	357
10.3.	Sufficient Conditions Through Convexity	359
	Linear State-Quadratic Performance Problem	361
10.4.	Separate Convexity and the Minimum Principle	365
	Problems	372
CHAI	PTER 11	
	essary Conditions for Optimality	378

Nece	essary Conditions for Optimality	378
11.1.	Necessity of the Minimum Principle	378
	(a) Effects of Control Variations	380
	(b) Autonomous Fixed Interval Problems	384
	Oscillator Energy Problem	389
	(c) General Control Problems	391
11.2.	Linear Time-Optimal Problems	397
	Problem Statement	398
	A Free Space Docking Problem	401
11.3.	General Lagrangian Constraints	404
	(a) Control Sets Described by Lagrangian Inequalities	405
	(b)* Variational Problems with Lagrangian Constraints	406
	(c) Extensions	410
	Problems	413

Appendix

A.0.	Compact Sets in \mathbb{R}^d	419
A.1.	The Intermediate and Mean Value Theorems	421
A.2.	The Fundamental Theorem of Calculus	423
A.3.	Partial Integrals: Leibniz' Formula	425
A.4.	An Open Mapping Theorem	427
A.5.	Families of Solutions to a System of Differential Equations	429
A.6.	The Rayleigh Ratio	435
A.7*.	Linear Functionals and Tangent Cones in \mathbb{R}^d	441
Bibliography		445
Hi	storical References	450
Answers to Selected Problems		452
Inde	x	457