Gabor Toth

## Finite Möbius Groups, Minimal Immersions of Spheres, and Moduli



Gabor Toth Department of Mathematical Sciences Rutgers University, Camden Camden, NJ 08102 USA gtoth@camden.rutgers.edu

Editorial Board (North America):

S. Axler Mathematics Department San Francisco State University San Francisco, CA 94132 USA

K.A. Ribet Mathematics Department University of California at Berkeley Berkeley, CA 94720-3840 USA F.W. Gehring Mathematics Department East Hall University of Michigan Ann Arbor, MI 48109-1109 USA

Mathematics Subject Classification (2000): 53C42, 58E20 49Q05 53A10

Library of Congress Cataloging-in-Publication Data
Tóth, Gábor, Ph.D.
Finite Möbius groups, minimal immersions of spheres, and moduli / Gabor Toth.
p. cm. -(Universitext)
Includes bibliographical references and index.
ISBN 978-1-4612-6546-7 ISBN 978-1-4613-0061-8 (eBook)
DOI 10.1007/978-1-4613-0061-8
1. Conformal geometry. 2. Immersions (Mathematics) 3. Moduli theory. I. Title.
QA609.T68 2001
516.3'6--dc21 2001041114

Printed on acid-free paper.

©2002 Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 2002 Softcover reprint of the hardcover 1st edition 2002 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may be accordingly used freely by anyone.

Production managed by A. Orrantia; manufacturing supervised by Erica Bresler. Photocomposed copy prepared by Bartlett Press, Inc., Marietta, GA.

987654321

ISBN 978-1-4612-6546-7 SPIN 10841979

## Contents

## Introduction and Synopsis

| 1 | Finit                                   | te Möbius Groups                                         | 1   |
|---|-----------------------------------------|----------------------------------------------------------|-----|
|   | 1.1                                     | Platonic Solids and Finite Rotation Groups               | 1   |
|   | 1.2                                     | Rotations and Möbius Transformations                     | 22  |
|   | 1.3                                     | Invariant Forms                                          | 38  |
|   | 1.4                                     | Minimal Immersions of the 3-sphere into Spheres          | 50  |
|   | 1.5                                     | Minimal Imbeddings of Spherical Space Forms into Spheres | 59  |
|   | 1.6                                     | Additional Topic: Klein's Theory of the Icosahedron      | 66  |
| 2 | Moduli for Eigenmaps                    |                                                          |     |
|   | 2.1                                     | Spherical Harmonics                                      | 95  |
|   | 2.2                                     | Generalities on Eigenmaps                                | 107 |
|   | 2.3                                     | Moduli                                                   | 110 |
|   | 2.4                                     | Raising and Lowering the Degree                          | 129 |
|   | 2.5                                     | Exact Dimension of the Moduli $\mathcal{L}^p$            | 132 |
|   | 2.6                                     | Equivariant Imbedding of Moduli                          | 137 |
|   | 2.7                                     | Quadratic Eigenmaps in Domain Dimension Three            | 140 |
|   | 2.8                                     | Raising the Domain Dimension                             | 149 |
|   | 2.9                                     | Additional Topic: Quadratic Eigenmaps                    | 154 |
| 3 | Moduli for Spherical Minimal Immersions |                                                          |     |
|   | 3.1                                     | Conformal Eigenmaps and Moduli                           | 171 |
|   | 3.2                                     | Conformal Fields and Eigenmaps                           | 180 |

vii

|                                                                                          | 3.3                   | Conformal Fields and Raising and Lowering the Degree . | 188        |  |
|------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------|------------|--|
|                                                                                          | 3.4                   | Exact Dimension of the Moduli $\mathcal{M}^p$          | 193        |  |
|                                                                                          | 3.5                   | Isotropic Minimal Immersions                           | 195        |  |
|                                                                                          | 3.6                   | Quartic Minimal Immersions in Domain Dimension Three   | 206        |  |
|                                                                                          | 3.7                   | Additional Topic: The Inverse of $\Psi$                | 232        |  |
| 4                                                                                        | Lowe                  | r Bounds on the Range of Spherical Minimal             |            |  |
|                                                                                          | Imm                   | ersions                                                | <b>241</b> |  |
|                                                                                          | 4.1                   | Infinitesimal Rotations of Eigenmaps                   | 241        |  |
|                                                                                          | 4.2                   | Infinitesimal Rotations and the Casimir Operator       | 247        |  |
|                                                                                          | 4.3                   | Infinitesimal Rotations and Degree-Raising             | 256        |  |
|                                                                                          | 4.4                   | Lower Bounds for the Range Dimension, Part I           | 259        |  |
|                                                                                          | 4.5                   | Lower Bounds for the Range Dimension, Part II          | 267        |  |
|                                                                                          | 4.6                   | Additional Topic: Operators                            | 275        |  |
| Appendix 1. Convex Sets                                                                  |                       |                                                        |            |  |
| Appendix 2. Harmonic Maps and Minimal Immersions                                         |                       |                                                        |            |  |
| Appendix 3. Some Facts from the Representation Theory of<br>the Special Orthogonal Group |                       |                                                        |            |  |
| Bi                                                                                       | Bibliography          |                                                        |            |  |
| G                                                                                        | Glossary of Notations |                                                        |            |  |
| Index                                                                                    |                       |                                                        |            |  |