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Preface 

In the past decade there has been a significant change in the freshman/ 
sophomore mathematics curriculum as taught at many, if not most, of our 
colleges. This has been brought about by the introduction of linear algebra 
into the curriculum at the sophomore level. The advantages of using linear 
algebra both in the teaching of differential equations and in the teaching 
of multivariate calculus are by now widely recognized. Several textbooks 
adopting this point of view are now available and have been widely adopted. 
Students completing the sophomore year now have a fair preliminary under­
standing of spaces of many dimensions. 

It should be apparent that courses on the junior level should draw upon 
and reinforce the concepts and skills learned during the previous year. 
Unfortunately, in differential geometry at least, this is usually not the case. 
Textbooks directed to students at this level generally restrict attention to 
2-dimensional surfaces in 3-space rather than to surfaces of arbitrary 
dimension. Although most of the recent books do use linear algebra, it is 
only the algebra of ~3. The student's preliminary understanding of higher 
dimensions is not cultivated. 

This book develops the geometry of n-dimensional surfaces in (n + 1)­
space. It is designed for a I-semester differential geometry course at the 
junior-senior level. It draws significantly on the contemporary student's 
knowlbdge oflinear algebra, multivariate calculus, and differential equations, 
thereby solidifying the student's understanding of these subjects. Indeed, 
one of the reasons that a course in differential geometry is so valuable at 
this level is that it does turn out students with a thorough understanding 
of several variable calculus. 

Another reason that differential geometry regularly attracts students is 
that it contains ideas which are not only beautiful in themselves but are 
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viii Preface 

basic for both advanced mathematics and theoretical physics. It has been 
the author's experience that students taking his course have been more or 
less evenly divided between mathematics and physics majors. The approach 
adopted in this book, describing surfaces as solution sets of equations, 
seems to be especially attractive to physicists. 

The book considers from the outset the geometry of orientable hyper­
surfaces in IRn + 1, exhibited as inverse images of regular values of smooth 
functions. By considering only such hypersurfaces for the first half of the 
book, it is possible to move rapidly into interesting global geometry without 
getting hung up on the development of sophisticated machinery. Thus, for 
example, charts (coordinate patches) are not introduced until after the 
initial discussions of geodesics, parallelism, curvature, and convexity. When 
charts are introduced, it is as a tool for computation. However, they then 
lead the development naturally into the study of focal points and surfaces 
of arbitrary codimension. 

One of the advantages of treating the geometry of n-dimensions from the 
outset is that one can then illustrate each concept simultaneously in each 
of the low dimensions. Thus, for example, the student's understanding of 
the Gauss map and its (spherical) image is aided by the possibility of 
studying I-dimensional examples, where the spherical image is a subset of 
the unit circle. 

The main tool used in developing the theory is that of the calculus of 
vector fields. This seems to be the most natural tool for studying differential 
geometry as well as the one most familiar to undergraduate students of 
mathematics and physics. Differential forms are not introduced until fairly 
late in the book, and then only as needed for use in integration. 

Students who have completed a good 2-year calculus sequence including 
linear algebra and differential equations should be adequately prepared to 
study this book. There are occasional places (e.g., in Chapter 13 on convexity) 
where some exposure to the ideas of mathematical analysis would be helpful, 
but not essential. 

There is probably more material here than can be covered comfortably 
in one semester except by students with unusually strong backgrounds. 
Chapters 1-12, 14, 15, 22, and 23 contain the core of basic material which 
should be covered in every course. Most instructors will probably also want 
to cover at least parts of Chapters 17, 19, and 24. 
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The interdependence of the chapters is as follows: 

A few concepts in the early part of Chapter 13 are used in later chapters 
but these may be studied, by those skipping Chapter 13, as needed. 

Like the author of any textbook, lowe a considerable debt to researchers 
and textbook writers who have preceded me and to teachers, colleagues, 
and students who have influenced me. While I cannot explicitly acknowledge 
all these, I must at least credit M. do Carmo and E. Lima whose paper, 
Isometric immersions with semi-definite second quadratic forms, Arch. Math. 
20 (1969) 173-175, inspired the treatment of convex surfaces in Chapter 13, 
and S. S. Chern whose paper, A simple intrinsic proof of the Gauss-Bonnet 
formula for closed Riemannian manifolds, Ann. of Math. (2) 45 (1944) 
747-752, inspired the treatment ofthe Gauss-Bonnet theorem in Chapter 21. 
In addition, special thanks are due to Wolfgang Meyer whose comments on 
the manuscript have been extremely helpful. 

Stony Brook, New York 
November, 1978 

JOHN A. THORPE 
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