Roger Temam

Infinite-Dimensional Dynamical Systems in Mechanics and Physics

With 13 Illustrations

Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Roger Temam Laboratoire d'Analyse Numérique Université Paris Sud Orsay 91405 France

Editors

F. John Courant Institute of Mathematical Sciences New York University New York, NY 10012 U.S.A. J.E. Marsden Department of Mathematics University of California Berkeley, CA 94720 U.S.A. L. Sirovich Division of Applied Mathematics Brown University Providence, RI 02912 U.S.A.

Mathematics Subject Classifications (1980): Primary: 35B99, 35K60, 35Q10, 35Q20, 58F25, 76F99 Secondary: 76D05, 78A05, 78A40, 80A30, 92A12

Library of Congress Cataloging-in-Publication Data

Temam, Roger.

Infinite-dimensional dynamical systems in mechanics and physics / Roger Temam. p. cm. — (Applied mathematical sciences; v. 68) Bibliography: p. Includes index.

 Differentiable dynamical systems.
 Boundary value problems.
 Nonlinear theories. I. Title. II. Series: Applied mathematical sciences (Springer-Verlag, New York, Inc.); v. 68.
 QA1.A647 vol. 68
 [QA614.8]
 510 s—dc 19
 [515.3'52]
 87-28522

© 1988 by Springer-Verlag New York Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York, NY 10010, U.S.A.), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Typeset by Asco Trade Typesetting Ltd., Hong Kong. Softcover reprint of the hardcover 1st edition 1988

9 8 7 6 5 4 3 2 1 ISBN-13: 978-1-4684-0315-2 e-ISBN-13: 978-1-4684-0313-8 DOI: 10.1007/ 978-1-4684-0313-8

Contents

Preface		v
G	eneral Introduction. The User's Guide	1
	Introduction	1
1.	Mechanism and Description of Chaos. The Finite-Dimensional Case	2
	Mechanism and Description of Chaos. The Infinite-Dimensional Case	6
3.	The Global Attractor. Reduction to Finite Dimension	10
4.	Remarks on the Computational Aspect	12
5.	The User's Guide	13
C	HAPTER I	
G	eneral Results and Concepts on Invariant Sets and Attractors	15
	Introduction	15
1.	Semigroups, Invariant Sets, and Attractors	16
	1.1. Semigroups of Operators	16
	1.2. Functional Invariant Sets	18
	1.3. Absorbing Sets and Attractors	20
	1.4. A Remark on the Stability of the Attractors	26
2.	Examples in Ordinary Differential Equations	28
	2.1. The Pendulum	28
	2.2. The Minea System	30
	2.3. The Lorenz Model	33
3.	Fractal Interpolation and Attractors	35
	3.1. The General Framework	35

5.1.	The General Framework	
3.2.	The Interpolation Process	
3.3.	Proof of Theorem 3.1	

36

38

CHAPTER II

Elements of Functional Analysis	
Introduction	41
1. Function Spaces	41
1.1. Definition of the Spaces. Notations	41
1.2. Properties of Sobolev Spaces	43
1.3. Other Sobolev Spaces	47
1.4. Further Properties of Sobolev Spaces	49
2. Linear Operators	51
2.1. Bilinear Forms and Linear Operators	52
2.2. "Concrete" Examples of Linear Operators	56
3. Linear Evolution Equations of the First Order in Time	66
3.1. Hypotheses	66
3.2. A Result of Existence and Uniqueness	68
3.3. Regularity Results	69
3.4. Time-Dependent Operators	72
4. Linear Evolution Equations of the Second Order in Time	74
4.1. The Evolution Problem	74
4.2. Another Result	77
4.3. Time-Dependent Operators	78

CHAPTER III

Attractors of the Dissipative Evolution Equation of the First Order	
in Time: Reaction-Diffusion Equations. Fluid Mechanics and	
Pattern Formation Equations	80
Introduction	80
1. Reaction–Diffusion Equations	81
1.1. Equations with a Polynomial Nonlinearity	82
1.2. Equations with an Invariant Region	91
2. Navier–Stokes Equations $(n = 2)$	102
2.1. The Equations and Their Mathematical Setting	103
2.2. Absorbing Sets and Attractors	107
2.3. Proof of Theorem 2.1	111
3. Other Equations in Fluid Mechanics	113
3.1. Abstract Equation. General Results	113
3.2. Fluid Driven by Its Boundary	116
3.3. Magnetohydrodynamics (MHD)	119
3.4. Geophysical Flows (Flows on a Manifold)	123
3.5. Thermohydraulics	129
4. Some Pattern Formation Equations	137
4.1. The Kuramoto-Sivashinsky Equation	137
4.2. The Cahn-Hilliard Equation	147
5. Semilinear Equations	158
5.1. The Equations. The Semigroup	158
5.2. Absorbing Sets and Attractors	163
5.3. Proof of Theorem 5.2	166
6. Backward Uniqueness	167
6.1. An Abstract Result	168
6.2. Applications	171

Contents

CHAPTER IV	
Attractors of Dissipative Wave Equations	175
	175
Introduction	175
1. Linear Equations: Summary and Additional Results	176
1.1. The General Framework	177
1.2. Exponential Decay	179
1.3. Bounded Solutions on the Real Line	182
2. The Sine–Gordon Equation	184
2.1. The Equation and Its Mathematical Setting	185
2.2. Absorbing Sets and Attractors	187
2.3. Other Boundary Conditions	192
3. A Nonlinear Wave Equation of Relativistic Quantum Mechanics	198
3.1. The Equation and Its Mathematical Setting	198
3.2. Absorbing Sets and Attractors	202
4. An Abstract Wave Equation	208
4.1. The Abstract Equation. The Group of Operators	208
4.2. Absorbing Sets and Attractors	211
4.3. Examples	216
4.4. Proof of Theorem 4.1 (Sketch)	220
5. A Nonlinear Schrödinger Equation	222
5.1. The Equation and Its Mathematical Setting	223
5.2. Absorbing Sets and Attractors	226
6. Regularity of Attractors	230
6.1. A Preliminary Result	231
6.2. Example of Partial Regularity	235
6.3. Example of \mathscr{C}^{∞} Regularity	238
7. Stability of Attractors	243

CHAPTER V

Lyapunov Exponents and Dimension of Attractors	249
Introduction	249
1. Linear and Multilinear Algebra	250
1.1. Exterior Product of Hilbert Spaces	250
1.2. Multilinear Operators and Exterior Products	254
1.3. Image of a Ball by a Linear Operator	260
2. Lyapunov Exponents and Lyapunov Numbers	268
2.1. Distortion of Volumes Produced by the Semigroup	268
2.2. Definition of the Lyapunov Exponents and Lyapunov	
Numbers	270
2.3. Evolution of the Volume Element and Its Exponential Decay:	
The Abstract Framework	275
3. Hausdorff and Fractal Dimensions of Attractors	278
3.1. Hausdorff and Fractal Dimensions	278
3.2. Covering Lemmas	280
3.3. The Main Results	281
3.4. Application to Evolution Equations	290

xiii

CHAPTER VI	
Explicit Bounds on the Number of Degrees of Freedom and the	
Dimension of Attractors of Some Physical Systems	292
Introduction	292
1. The Lorenz Attractor	293
2. Reaction–Diffusion Equations	297
2.1. Equations with a Polynomial Nonlinearity	298
2.2. Equations with an Invariant Region	304
3. Navier–Stokes Equations $(n = 2)$	309
3.1. General Boundary Conditions	310
3.2. Improvements for the Space-Periodic Case	315
4. Other Equations in Fluid Mechanics	324
4.1. The Linearized Equations (The Abstract Framework)	324
4.2. Fluid Driven by Its Boundary	325
4.3. Magnetohydrodynamics	330
4.4. Flows on a Manifold	335
4.5. Thermohydraulics	340
5. Pattern Formation Equations	344
5.1. The Kuramoto-Sivashinsky Equation	345
5.2. The Cahn–Hilliard Equations	351
6. Dissipative Wave Equations	356
6.1. The Linearized Equation	357
6.2. Dimension of the Attractor	360 363
6.3. Sine–Gordon Equations 6.4. Some Lemmas	363
	366
 A Nonlinear Schrödinger Equation The Linearized Equation 	366
7.2. Dimension of the Attractor	367
8. Differentiability of the Semigroup	371
b. Differentiability of the beingroup	571
CHAPTER VII	
Non-Well-Posed Problems, Unstable Manifolds, Lyapunov	
Functions, and Lower Bounds on Dimensions	375
Introduction	375
	276
PART A: NON-WELL-POSED PROBLEMS	376
1. Dissipativity and Well Posedness	376
1.1. General Definitions	376
1.2. The Class of Problems Studied	377
1.3. The Main Result	381
2. Estimate of Dimension for Non-Well-Posed Problems:	205
Examples in Fluid Dynamics	385
2.1. The Equations and Their Linearization	386
2.2. Estimate of the Dimension of X	387
2.3. The Three-Dimensional Navier-Stokes Equations	389
PART B: Unstable Manifolds, Lyapunov Functions, and	
Lower Bounds on Dimensions	392
3. Stable and Unstable Manifolds	392
3.1. Structure of a Mapping in the Neighborhood of a Fixed Point	393

 3.2. Application to Attractors 3.3. Unstable Manifold of a Compact Invariant Set 4. The Attractor of a Semigroup with a Lyapunov Function 4.1. A General Result 4.2. Additional Results 4.3. Examples 5. Lower Bounds on Dimensions of Attractors: An Example 	395 399 400 400 402 405 406
CHAPTER VIII The Cone and Squeezing Properties. Inertial Manifolds	408
The cone and squeezing Tropernes. merian mannen	100
Introduction	408
1. The Cone Property	409
1.1. The Cone Property	409
1.2. Generalizations	412
1.3. The Squeezing Property	414
2. Construction of an Inertial Manifold: Description of the Method	415
2.1. Inertial Manifolds: The Method of Construction	415
2.2. The Initial and Prepared Equations	416
2.3. The Mapping \mathcal{T}	419
3. Existence of an Inertial Manifold	422
3.1. The Result of Existence	423
3.2. First Properties of \mathcal{T}	424
3.3. Utilization of the Cone Property	426
3.4. Proof of Theorem 3.1 (End)	432
3.5. Another Form of Theorem 3.1	435
4. Examples	436
4.1. Example 1: The Kuramoto–Sivashinsky Equation	436
4.2. Example 2: Approximate Inertial Manifolds for the	120
Navier-Stokes Equations	438
4.3. Example 3: Reaction–Diffusion Equations	440
4.4. Example 4: The Ginzburg-Landau Equation	441
5. Approximation and Stability of the Inertial Manifold with	440
Respect to Perturbations	442

APPENDIX Collective Sobolev Inequalities	446
Introduction	446
1. Notations and Hypotheses	447
1.1. The Operator \mathfrak{A}	447
1.2. The Schrödinger-Type Operators	449
2. Spectral Estimates for Schrödinger-Type Operators	451
2.1. The Birman-Schwinger Inequality	451
2.2. The Spectral Estimate	454
3. Generalization of the Sobolev-Lieb-Thirring Inequality (I)	457
4. Generalization of the Sobolev-Lieb-Thirring Inequality (II)	463
4.1. The Space-Periodic Case	464

xv

4.2. The General Case4.3. Proof of Theorem 4.15. Examples	466 468 471
Bibliography	475
Index	497