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Preface to the Second Edition 

During the short period of five years that have elapsed since the publication 
of the first edition a number of interesting mathematical developments have 
taken place and important results have been obtained that relate to the theme 
of this book. 

First of all, as predicted in the Preface to the first edition, Morse theory, in
deed, has gone through a dramatic change, influenced by the work by Andreas 
Floer on Hamiltonian systems and in particular, on the Arnold conjecture. 
There are now also excellent accounts of these developments and their ramifi
cations; see, in particular, the monograph by Matthias Schwarz [1]. The book 
by Hofer-Zehnder [2] on Symplectic Geometry shows that variational methods 
and, in particular, Floer theory have applications that range far beyond the 
classical area of analysis. 

Second, as a consequence of an observation by Stefan Muller [1] which 
prompted the seminal work of Coifman-Lions-Meyer-Semmes [1], Hardy spaces 
and the space BMO are now playing a very important role in weak conver
gence results, in particular, when dealing with problems that exhibit a special 
(determinant) structure. A brief discussion of these results and some model 
applications can be found in Section 1.3. 

Moreover, variational problems depending on some real parameter in cer
tain cases have been shown to admit rather surprising a-priori bounds on critical 
points, with numerous applications. Some examples will be given in Chapters 
1. 7 and 11.9. 

Other developments include the discovery of Hamiltonian systems with 
no periodic orbits on some given energy hypersurface, due to Ginzburg and 
Herman, and the discovery, by Chang-Ding-Ye, of finite time blow-up for the 
evolution problem for harmonic maps of surfaces, thus completing the results 
in Sections Il.S, Il.9 and Il1.6, respectively. 

A beautiful recent result ofYe concerns a new proof of the Yamabe theorem 
in the case of a locally conformally flat manifold. This proof is presented in 
detail in Section IlI.4 of this new edition. 

In view of their numerous and wide-ranging applications, interest in vari
ational methods is very strong and growing. Out of the large number of recent 
publications in the general field of the calculus of variations and its applica
tions some 50 new references have been added that directly relate to one of the 
themes in this monograph. 

Owing to the very favorable response with which the first edition of this 
book was received by the mathematical community, the publisher has sug
gested that a second edition be published in the Ergebnisse series. It is a 
pleasure to thank all the many mathematicians, colleagues, and friends who 
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have commented on the first edition. Their enthusiasm has been highly in
spiring. Moreover, I would like to thank, in particular, Matts Essen, Martin 
Flucher and Helmut Hofer for helpful suggestions in preparing this new edition. 

All additions and changes to the first edition were carefully implemented by 
Suzanne Kronenberg, using the Springer TeX-Macros package, and I gratefully 
acknowledge her help. 

Zurich, Juni 1996 Michael Struwe 



Preface to the First Edition 

It would be hopeless to attempt to give a complete account of the history of 
the calculus of variations. The interest of Greek philosophers in isoperimetric 
problems underscores the importance of "optimal form" already in ancient 
cultures; see Hildebrandt-Tromba [1] for a beautiful treatise of this subject. 
While variational problems thus are part of our classical cultural heritage, the 
first modern treatment of a variational problem is attributed to Fermat, see 
Goldstine [1; p.l]. Postulating that light follows a path of least possible time, 
in 1662 Fermat was able to derive the laws of refraction, thereby using methods 
which may already be termed analytic. 

With the development of the Calculus by Newton and Leibniz, the basis 
was laid for a more systematic development of the calculus of variations. The 
brothers Johann and Jakob Bernoulli and Johann's student Leonhard Euler, all 
from the city of Basel in Switzerland, were to become the "founding fathers" 
(Hildebrandt-Tromba [1; p.21]) of this new discipline. In 1743 Euler [1] sub
mitted "A method for finding curves enjoying certain maximum or minimum 
properties" , published 1744, the first textbook on the calculus of variations. In 
an appendix to this book Euler [1; Appendix II, p. 298] expresses his belief 
that "every effect in nature follows a maximum or minimum rule" (see also 
Goldstine [1; p. 106]), a credo in the universality of the calculus of variations 
as a tool. The same conviction also shines through Maupertuis' [1] work on the 
famous "least action principle", also published in 1744. (In retrospect, how
ever, it seems that Euler was the first to observe this important principle. See 
for instance Goldstine [1; p. 67 f. and p. 101 ff.] for a more detailed histori
cal account.) Euler's book was a great source of inspiration for generations of 
mathematicians following. 

Major contributions were made by Lagrange, Legendre, Jacobi, Clebsch, 
Mayer, and Hamilton to whom we owe what we now call "Euler-Lagrange 
equations", the "Jacobi differential equation" for a family of extremals, or 
"Hamilton-Jacobi theory". 

The use of variational methods was not at all limited to I-dimensional 
problems in the mechanics of mass-points. In the 19th century variational 
methods also were employed for instance to determine the distribution of an 
electrical charge on the surface of a conductor from the requirement that the 
energy of the associated electrical field be minimal ("Dirichlet's principle"; see 
Dirichlet [1] or Gauss [1]) or were used in the construction of analytic functions 
(Riemann [1]). 

However, none of these applications was carried out with complete rigor. 
Often the model was confused with the phenomenon that it was supposed to 
describe and the fact (7) that for instance in nature there always exists a 
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equilibrium distribution for an electrical charge on a conducting surface was 
taken as sufficient evidence for the corresponding mathematical problem to 
have a solution. A typical reasoning reads as follows: 

"In any event therefore the integral will be non-negative and hence there 
must exist a distribution (of charge) for which this integral assumes its mini
mum value," (Gauss [1; p.232J, translation by the author). 

However, towards the end of the 19th century progress in abstraction and 
a better understanding of the foundations of the calculus opened such argu
ments to criticism. Soon enough, Weierstrass [1; pp. 52-54J found an exam
ple of a variational problem that did not admit a minimum solution. Weier
strass challenged his colleagues to find a continuously differentiable function 
u: [-1, IJ -.lR minimizing the integral 

I(u) = [11 Ix d~ ul
2 

dx 

subject (for instance) to the boundary conditions u(±I) = ±l. Choosing 

_ arctan(~) 
uc(x) - e)' c > 0, 

arctan E 

as a family of comparison functions, Weierstrass was able to show that the 
infinium of I in the above class was 0; however, the value 0 is not attained. 
(See also Goldstine [1; p. 371 f.J.) Weierstrass' critique of Dirichlet's principle 
precipitated the calculus of variations into a Grundlagenkrise comparable to the 
crisis in set theory and logic after Russel's discovery of antinomies in Cantor's 
set theory or Godel's incompleteness proof. 

However, through the combined efforts of several mathematicians who did 
not want to give up the wonderful tool that Dirichlet's principle had been -
including Weierstrass, Arzela, Frechet, Hilbert, and Lebesgue - the calculus of 
variations was revalidated and emerged from its crisis with new strength and 
vigor. 

Hilbert's speech at the centennial assembly of the International Congress 
1900 in Paris, where he proposed his famous 20 problems - two of which devoted 
to questions related to the calculus of variatons - marks this newly found 
confidence. 

In fact, following Hilbert's [IJ and Lebesgue's [1] solution of the Dirichlet 
problem, a development began which within a few decades brought tremendous 
success, highlighted by the 1929 theorem of Ljusternik and Schnirelman [IJ on 
the existence of three distinct prime closed geodesics on any compact surface 
of genus zero, or the 1930/31 solution of Plateau's problem by Douglas [1], [2] 
and Rado [1]. 

The Ljusternik-Schnirelman result (and a previous result by Birkhoff [1 J, 
proving the existence of one closed geodesic on a surface of genus 0) also 
marks the beginning of global analyis. This goes beyond Dirichlet's princi
ple as we no longer consider only minimizers (or maximizers) of variational 
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integrals, but instead look at all their critical points. The work of Ljusternik 
and Schnirelman revealed that much of the complexity of a function space 
is invariably reflected in the set of critical points of any variational integral 
defined on it, an idea whose importance for the further development of math
ematics can hardly be overestimated, whose implications even today may only 
be conjectured, and whose applications seem to be virtually unlimited. Later, 
Ljusternik and Schnirelman [2] laid down the foundations of their method in a 
general theory. In honor of their pioneering effort any method which seeks to 
draw information concerning the number of critical points of a functional from 
topological data today often is referred to as Ljusternik-Schnirelman theory. 

Around the time of Ljusternik and Schnirelman's work, another - equally 
important - approach towards a global theory of critical points was pursued 
by Marston Morse [2]. Morse's work also reveals a deep relation between the 
topology of a space and the number and types of critical points of any function 
defined on it. In particular, this led to the discovery of unstable minimal 
surfaces through the work of Morse-Tompkins [1], [2] and Shiffman [1], [2]. 
Somewhat reshaped and clarified, in the 50's Morse theory was highly successful 
in topology (see Milnor [1] and Smale [1]). After Palais [1], [2] and Smale [2] in 
the 60's succeeded in generalizing Milnor's constructions to infinite-dimensional 
Hilbert manifolds - see also Rothe [1] for some early work in this regard -
Morse theory finally was recognized as a useful (and usable) instrument also 
for dealing with partial differential equations. 

However, applications of Morse theory seemed somewhat limited in view of 
prohibitive regularity and non-degeneracy conditions to be met in a variational 
problem, conditions which - by the way - were absent in Morse's original 
work. Today, inspired by the deep work of Conley [1], Morse theory seems to 
be turning back to its origins again. In fact, a Morse-Conley theory is emerging 
which one day may provide a tool as universal as Ljusternik-Schnirelman theory 
and still offer an even better resolution of the relation between the critical set 
of a functional and topological properties of its domain. However, in spite 
of encouraging results, for instance by Benci [4], Conley-Zehnder [1], Jost
Struwe [1], Rybakowski [1], [2], Rybakowski-Zehnder [1], Salamon [1], and - in 
particular - Floer [1], a general theory of this kind does not yet exist. 

In these notes we want to give an overview of the state of the art in some 
areas of the calculus of variations. Chapter I deals with the classical direct 
methods and some of their recent extensions. In Chapters II and III we discuss 
minimax methods, that is, Ljusternik-Schnirelman theory, with an emphasis on 
some limiting cases in the last chapter, leaving aside the issue of Morse theory 
whose face is currently changing all too rapidly. 

Examples and applications are given to semilinear elliptic partial differ
ential equations and systems, Hamiltonian systems, nonlinear wave equations, 
and problems related to harmonic maps of Riemannian manifolds or surfaces 
of prescribed mean curvature. Although our selection is of course biased by 
the interests of the author, an effort has been made to achieve a good balance 
between different areas of current research. Most of the results are known; 
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some of the proofs have been reworked and simplified. Attributions are made 
to the best of the author's knowledge. No attempt has been made to give an 
exhaustive account of the field or a complete survey of the literature. 

General references for related material are Berger-Berger [1], Berger [lJ, 
Chow-Hale [1], Eells [1], Nirenberg [1], Rabinowitz [11], Schwartz [2], Zeidler 
[lJ; in particular, we recommend the recent books by Ekeland [2J and Mawhin
Willem [1 J on variational methods with a focus on Hamiltonian systems and 
the forthcoming works of Chang [7J and Giaquinta-Hildebrandt. Besides, we 
mention the classical text books by Krasnoselskii [1 J (see also Krasnoselskii
Zabraiko [1]), Ljusternik-Schnirelman [2J, Morse [2J, and Vainberg [lJ. As for 
applications to Hamiltonian systems and nonlinear variational problems, the 
interested reader may also find additional references on a special topic in these 
fields in the short surveys by Ambrosetti [2J, Rabinowitz [9J, or Zehnder [1 J. 

The material covered in these notes is designed for advanced graduate 
or Ph.D. students or anyone who wishes to acquaint himself with variational 
methods and possesses a working knowledge of linear functional analysis and 
linear partial differential equations. Being familiar with the definitions and 
basic properties of Sobolev spaces as provided for instance in the book by 
Gilbarg-Trudinger [1 J is recommended. However, some of these prerequisites 
can also be found in the appendix. 

In preparing this manuscript I have received help and encouragement from 
a number of friends and colleagues. In particular, I wish to thank Proff. Her
bert Amann and Hans-Wilhelm Alt for helpful comments concerning the first 
two sections of Chapter 1. Likewise, I am indebted to Prof. Jurgen Moser for 
useful suggestions concerning Section 1.4 and to Proff. Helmut Hofer and Ed
uard Zehnder for advice on Sections 1.6, 11.5, and U.8, concerning Hamiltonian 
systems. 

Moreover, 1 am grateful to Gabi Hitz, Peter Bamert, Jochen Denzler, Mar
tin Flucher, Frank Josellis, Thomas Kerler, Malte Schunemann, Miguel Sofer, 
Jean-Paul Theubet, and Thomas Wurms for going through a set of preliminary 
notes for this manuscript with me in a seminar at ETH Zurich during the win
ter term of 1988/89. The present text certainly has profited a great deal from 
their careful study and criticism. 

Special thanks I also owe to Kai Jenni for the wonderful typesetting of this 
manuscript with the 'lEX text processing system. 

I dedicate this book to my wife Anne. 

Zurich, January 1990 Michael Struwe 
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Glossary of Notations 

v, V* generic Banach space with dual V* 

II . II norm in V 
II . II * induced norm in V*, often also denoted II . II 
(-, .): V X V* -; IR dual pairing, occasionally also used to denote scalar 

product in IRn 

E generic energy functional 

DE Frechet derivative 

Dom(E) domain of E 

(v, DE(u)) = DE(u)v = DvE(u) directional derivative of Eat u in di-

rection v 
space of Lebesgue-measurable functions u: fl -; IRn 

with finite LP-norm 

space of Lebesgue-measurable and essentially 
bounded functions u: fl -; IRn with norm 

Ilullvoo = esssup lu(x)l. 
xED 

Sobolev space of functions u E LP(fl; IRn) with 

I~kul E U(fl) for all k E IN~, Ikl ::; m, with norm 

IlullHm,p = LO~lkl~m II~kuIILP. 
completion of Co(fl; IRn) in the norm II . IIHm,p; 
if fl is bounded an equivalent norm is given by 

IluIIH~n,p = Llkl=m II~kuIILP. 
dual of Hom,P(fl; IRn ), where'! = .! = 1; q is omit-

P q 

ted, if p = q = 2. 
completion of Co(fl; IRn) in the norm IlullDm,p = 
Llkl=m II~kuIILP. 



xvi Glossary of Notations 

Cm,Ci (il; lR n) space of m times continuously differentiable func

tions u: il ---+ lRn whose m-th order derivatives are 

Holder continuous with exponent 0 ::; a ::; 1 
Cff (il; lR n) space of smooth functions u: il ---+ lR n with compact 

support in il. 

supp(u) = {x E il ; u(x) =f O} support of a function u: il ---+lRn. 

il' cc il the closure of il' is compact and contained in il 
L- restriction of a measure 
en Lebesgue measure on lRn. 

Bp(u; V) = {v E V ; Ilu - vii < p} open ball of radius p around u E 

V; in particular, if V = lRn, then Bp(xo) = 
Bp(xo;lRn), Bp = Bp(O) 

Re real part 

1m 

c,C 
Cross-references 

imaginary part 

generic constants 

(N.x.y) refers to formula (x, y) in Chapter N 
(x.y) within Chapter N refers to formula (N.x.y). 


