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Preface 

Linear Programming and Its Applications is intended for a first course in 
linear programming, preferably in the sophomore or junior year of the typical 
undergraduate curriculum. The emphasis throughout the book is on linear 
programming skills via the algorithmic solution of small-scale problems, both 
in the general sense and in the specific applications where these problems 
naturally occur. 

The book arose from lecture notes prepared during the years 1985-1987 
while I was a graduate assistant in the Department of Mathematics at The 
Pennsylvania State University. I used a preliminary draft in a Methods of 
Management Science class in the spring semester of 1988 at Lock Haven 
University. Having been extensively tried and tested in the classroom at 
various stages of its development, the book reflects many modifications either 
suggested directly by students or deemed appropriate from responses by 
students in the classroom setting. My primary aim in writing the book was 
to address common errors and difficulties as clearly and effectively as I could. 

The organization of the book attempts to achieve an orderly and natural 
progression of topics. The first part of the book deals with methods to 
solve general linear programming problems and discusses the theory of 
duality that connects these problems. Chapter 1 deals with solving linear 
programming problems geometrically; it is intended to constitute an intro­
duction to the general linear programming problem through familiar 
geometrical concepts. At the same time, to motivate the study of a more 
effective procedure, the drawbacks of the geometric method are stressed. 
Chapter 2 develops the more effective procedure, the simplex algorithm of 
G. Dantzig. In this respect the book differs from several others in that it uses 
the condensed tableau of A.W. Tucker to record linear programming 
problems rather than the classical Dantzig tableau. The smaller size of the 
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Tucker tableau makes it much more amenable to both hand and computer 
calculations. Chapter 3 covers certain related problems that are not immedi­
ately solvable by the simplex algorithm, but, fortunately, can be easily 
converted to a form approachable by that method. (Such conversions are 
especially important in the second part of the book.) Chapter 4 concludes 
the first part of the book with a treatment of duality theory, a theory that 
establishes relationships between linear programming problems ofmaximiza­
tion and minimization. The Tucker tableau approach makes an elegant 
presentation of this theory possible. 

The second part of the book deals with several applications. These 
applications, besides being important in their own right, constitute intro­
ductions to important fields related to linear programming; the partial 
intention of this part of the book is the stimulation of the reader's interest 
in one or more of these fields. Chapter 5 introduces game theory. The methods 
applied to the games presented here are precisely those discussed in 
Chapters 2-4. Chapter 6 presents transportation and assignment problems, 
a large class of problems within operations research. Disadvantages of using 
the direct simplex algorithm in the solution of such problems are indicated and 
new algorithms related to it are developed. Finally, Chapter 7 introduces 
graph theory with a treatment of various network-flow problems. Direct and 
effective graph-theoretic linear programming algorithms are developed and 
duality in a specific network-flow problem is discussed in detail. 

Appropriately for either a text or a reference book on linear programming, 
there are many examples and exercises. Virtually every definition is followed 
by several examples and every algorithm is illustrated in a step-by-step 
manner. The exercises range from easy computations to more difficult proofs 
and are chosen to elucidate and complement the exposition. To gain and 
reinforce comprehension of the material, the reader should attempt as many 
of these exercises as possible. The answers to all computational exercises 
appear in the back of the book; complete solutions to all exercises are in a 
supplementary solutions manual. 

I tried to make Linear Programming and Its Applications approachable 
from as many levels (sophomore to graduate) and as many fields (mathematics, 
computer science, engineering, actuarial science, and economics) as posssible. 
The basic prerequisite is a knowledge of linear equations including the 
graphing of lines and planes as well as the solution (without matrices) of 
systems of simultaneous linear equations. Brief appendices on matrix algebra 
(for Chapters 2 and 4) and elementary probability (for Chapter 5) are included. 

Each chapter of the book, except the introduction, is divided into sections 
(§'s). The symbol m§n is to be read as "Chapter m, section n." The numbering 
of definitions, examples, and theorems proceeds sequentially throughout each 
chapter (i.e., Definition 1, Example 2, Definition 3, Theorem 4, etc.). The 
scheme is intended to make it easier to find any particular item. The 
numbering of mathematical statements and diagrams is similar. Any linear 
programming problem written in non-tableau form such as 
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Maximize P(x, y) = 30x + 50y 

subject to 2x + y ~ 8 
x + 2y ~ 10 

x,y?; 0 

is referred to by a single number as in 

Maximize P(x, y) = 30x + 50y 

subject to 2x + y ~ 8 
x+2y~ 10 

x,y?; O. 

V11 

(1) 

If individual statements in such a problem need to be referred to, decimal 
numbering will be used, as in 

Maximize P(x, y) = 30x + 50y 

subject to 2x + Y ~ 8 
x + 2y ~ 10 

x,y?; O. 

Throughout the book, the following standard notations are used: 

The statement 

Z: the set of integers 
Q: the set of rational numbers 
R: the set of real numbers 
R": n-dimensional real Euclidean space 
V: "for all" or "for every." 

variable +- expression 

(1.1) 

(1.2) 
(1.3) 

(1.4) 

means "evaluate the expression and assign its value to the variable." Unless 
otherwise stated, all variables in this book represent real numbers. 

I would like to express my sincere appreciation to the reviewers of the 
book as well as the fine staff of Springer-Verlag who assisted in the publication 
of the book. I must also thank the many students at Penn State University 
and Lock Haven University who shaped what the book was to become by 
offering comments, suggestions, and encouragement; the book is dedicated 
to them. 

JAMES K. STRAYER 
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