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Preface 

This book is based on a one-year introductory course on numerical analysis given 
by the authors at several universities in Germany and the United States. The 
authors concentrate on methods which can be worked out on a digital computer. 
For important topics, algorithmic descriptions (given more or less formally in 
ALGOL 60), as well as thorough but concise treatments of their theoretical founda
tions, are provided. Where several methods for solving a problem are presented, 
comparisons of their applicability and limitations are offered. Each comparison is 
based on operation counts, theoretical properties such as convergence rates, and, 
more importantly, the intrinsic numerical properties that account for the reliability 
or unreliability of an algorithm. Within this context, the introductory chapter on 
error analysis plays a special role because it precisely describes basic concepts, 
such as the numerical stability of algorithms, that are indispensable in the thorough 
treatment of numerical questions. 

The remaining seven chapters are devoted to describing numerical methods in 
various contexts. In addition to covering standard topics, these chapters encom
pass some special subjects not usually found in introductions to numerical 
analysis. Chapter 2, which discusses interpolation, gives an account of modem 
fast Fourier transform methods. In Chapter 3, extrapolation techniques for spe~d
ing up the convergence of discretization methods in connection with Romberg 
integration are explained at length. 

The following chapter on solving linear equations contains a description of a 
numerically stable realization of the simplex method for solving linear program
ming problems. Further minimization algorithms for solving unconstrained 
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IV Preface 

minimization problems are treated in Chapter 5, which is devoted to solving 
nonlinear equations. 

After a long chapter on eigenvalue problems for matrices, Chapter 7 is devoted 
to methods for solving ordinary differential equations. This chapter contains a 
broad discussion of modem multiple shooting techniques for solving two-point 
J:>oundary-value problems. In contrast, methods for partial differential equations 
are not treated systematically. The aim is only to point out analogies to certain 
methods for solving ordinary differential equations, e.g., difference methods and 
variational techniques. The final chapter is devoted to discussing special methods 
for solving large sparse systems of linear equations resulting primarily from the 
application of difference or finite element techniques to partial differential equa
tions. In addition to iteration methods, the conjugate gradient algorithm of Hestenes 
and Stiefel and the Buneman algorithm (which provides an example of a modem 
direct method for solving the discretized Poisson problem) are described. 

Within each chapter numerous examples and exercises illustrate the numerical 
and theoretical properties of the various methods. Each chapter concludes with an 
extensive list of references. 

The authors are indebted to many who have contributed to this introduction into 
numerical analysis. Above all, we gratefully acknowledge the deep influence of 
the early lectures ofF. L. Bauer on our presentation. Many colleagues have helped 
us with their careful reading of manuscripts and many useful suggestions. Among 
others we would like to thank are C. Reinsch, M. B. Spijker, and, in particular, our 
indefatigable team of translators, R. Bartels, W. Gautschi, and C. Witzgall. Our 
co-workers K. Butendeich, G. Schuller, J. Zowe, and I. Brugger helped us to 
prepare the original German edition. Last but not least we express our sincerest 
thanks to Springer-Verlag for their good cooperation during the past years. 

Wiirzburg, Miinchen 
August 1979 

J. Stoer 
R. Bulirsch 
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