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Preface to the First Edition 

In recent years, many students have been introduced to topology in high 
school mathematics. Having met the Mobius band, the seven bridges of 
Konigsberg, Euler's polyhedron formula, and knots, the student is led to 
expect that these picturesque ideas will come to full flower in university 
topology courses. What a disappointment "undergraduate topology" proves 
to be! In most institutions it is either a service course for analysts, on abstract 
spaces, or else an introduction to homological algebra in which the only 
geometric activity is the completion of commutative diagrams. Pictures are 
kept to a minimum, and at the end the student still does nr~ understand the 
simplest topological facts, such as the rcason why knots exist. 

In my opinion, a well-balanced introduction to topology should stress its 
intuitive geometric aspect, while admitting the legitimate interest that analysts 
and algebraists have in the subject. At any rate, this is the aim of the present 
book. In support of this view, I have followed the historical development 
where practicable, since it clearly shows the influence of geometric thought 
at all stages. This is not to claim that topology received its main impetus 
from geometric recreations like the seven bridges; rather, it resulted from the 
l'isualization of problems from other parts of mathematics-complex analysis 
(Riemann), mechanics (Poincare), and group theory (Dehn). It is these connec
tions to other parts of mathematics which make topology an important as 
well as a beautiful subject. 

Another outcome of the historical approach is that one learns that classi
cal (prior to 1914) ideas are still alive, and still being worked out. In fact, 
many simply stated problems in 2 and 3 dimensions remain unsolved. The 
development of topology in directions of greater generality, complexity, and 
abstractness in recent decades has tended to obscure this fact. 

Attention is restricted to dimensions :s:: 3 in this book for the following 
reasons. 

(l) The subject matter is close to concrete, physical experience. 
(2) There is ample scope for analytic, geometric, and algebraic ideas. 
(3) A variety of interesting problems can be constructively solved. 
(4) Some equally interesting problems are still open. 
(5) The combinatorial viewpoint is known to be completely general. 
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The significance of (5) is the following. Topology is ostensibly the study of 
arbitrary continuous functions. In reality, however, we can comprehend and 
manipulate only functions which relate finite "chunks" of space in a simple 
combinatorial manner, and topology originally developed on this basis. It 
turns out that for figures built from such chunks (simplexes) of dimension :s 3, 
the combinatorial relationships reflect all relationships which are topologi
cally possible. Continuity is therefore a concept which can (and perhaps 
should) be eliminated, though of course some hard foundational work is 
required to achieve this. 

I have not taken the purely combinatorial route in this book, since it 
would be difficult to improve on Reidemeister's classic Einfuhrung in die 
Kornbinatorische Topologie (1932), and in any case the relationship between 
the continuous and the discrete is extremely interesting. I have chosen the 
middle course of placing one combinatorial concept-the fundamental group 
-on a rigorous foundation, and using others such as the Euler characteristic 
only descriptively. Experts will note that this means abandoning most of 
homology theory, but this is easily justified by the saving of space and the 
relative uselessness of homology theory in dimensions :s 3. (Furthermore, 
textbooks on homology theory are already plentiful, compared with those on 
the fundamental group.) 

Another reason for the emphasis on the fundamental group is that it 
is a two-way street between topology and algebra. Not only does group 
theory help to solve topological problems, but topology is of genuine help 
in group theory. This has to do with the fact that there is an underlying 
computational basis to both combinatorial topology and combinatorial group 
theory. The details are too intricate to be presented in this book, but the 
relevance of computation can be grasped by looking at topological problems 
from an algorithmic point of view. This was a key concern of early topologists 
and in recent times we have learned of the nonexistence of algorithms for 
certain topological problems, so it seems timely for a topology text to present 
what is known in this department. 

The book has developed from a one-semester course given to fourth year 
students at Monash University, expanded to two-semester length. A purely 
combinatorial course in surface topology and group theory, similar to the one 
I originally gave, can be extracted from Chapters 1 and 2 and Sections 4.3, 
5.2, 5.3, and 6.1. It would then be perfectly reasonable to spend a second 
semester deepening the foundations with Chapters 0 and 3 and going on to 
3-manifolds in Chapters 6, 7, and 8. Certainly the reader is not obliged to 
master Chapter 0 before reading the rest of the book. Rather, it should be 
skimmed once and then referred to when needed later. Students who have had 
a conventional first course in topology may not need 0.1-0.3 at all. 

The only prerequisites are some familiarity with elementary set theory, 
coordinate geometry and linear algebra, e-b arguments as in rigorous calculus, 
and the group concept. 



Preface to the Second Edition lX 

The text has been divided into numbered sections which are small enough, 
it is hoped, to be easily digestible. This has also made it possible to dispense 
with some of the ceremony which usually surrounds definitions, theorems, and 
proofs. Definitions are signalled simply by italicizing the terms being defined, 
and they and proofs are not numbered, since the section number will serve to 
locate them and the section title indicates their content. Unless a result already 
has a name (for example, the Seifert-Van Kampen theorem) I have not given 
it one, but have just stated it and followed with the proof, which ends with 
the symbol O. 

Because of the emphasis on historical development, there are frequent 
citations of both author and date, in the form: Poincare 1904. Since either the 
author or the date may be operative in the sentence, the result is sometimes 
grammatically curious, but I hope the reader will excuse this in the interests 
of brevity. The frequency of citations is also the result of trying to give credit 
where credit is due, which I believe is just as appropriate in a textbook as in 
a research paper. Among the references which I would recommend as parallel 
or subsequent reading are Giblin 1977 (homology theory for surfaces), Moise 
1977 (foundations for combinatorial 2- and 3-manifold theory), and Rolfsen 
1976 (knot theory and 3-manifolds). 

Exercises have been inserted in most sections, rather than being collected 
at the ends of chapters, in the hope that the reader will do an exercise more 
readily while his mind is still on the right track. If this is not sufficient prodding, 
some of the results from exercises are used in proofs. 

The text has been improved by the remarks of my students and from 
suggestions by Wilhelm Magnus and Raymond Lickorish, who read parts of 
earlier drafts and pointed out errors. I hope that few errors remain, but any 
that do are certainly my fault. I am also indebted to Anne-Marie Vandenberg 
for outstanding typing and layout of the original manuscript. 

October 1980 JOHN C. STILL WELL 

Preface to the Second Edition 

There have been several big developments in topology since the first edition 
of this book. Most of them are too difficult to include here, or else, well written 
up elsewhere, so I shall merely mention below what they are and where they 
may be found. The main new inclusion in this edition is a proof of the 
unsolvability of the word problem for groups, and some of its consequences. 
This is made possible by a new approach to the word problem discovered by 
Cohen and Aanderaa around 1980. Their approach makes it feasible to prove 
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a series of un solvability results we previously mentioned without proof, and 
thus to tie up several loose ends in the first edition. A new Chapter 9 has been 
added to incorporate these results. It is particularly pleasing to be able to give 
a proof of the unsolvability of the homeomorphism problem, which has not 
previously appeared in a textbook. 

What are the other big developments? They would have to include the 
proof by Freedman in 1982 of the 4-dimensional Poincare conjecture, and the 
related work of Donaldson on 4-manifolds. These difficult results may be 
found in Freedman and Quinn's The Topology of 4-manifolds (Princeton 
University Press, 1990) and Donaldson and Kronheimer's The Geometry of 
Four-Manifolds (Oxford University Press, 1990). With Freedman's proof, only 
the original (3-dimensional) Poincare conjecture remains open. In fact, the 
main problems of 3-dimensional topology seem to be just as stubborn as they 
were in 1980. There is still no algorithm for deciding when 3-manifolds are 
homeomorphic, or even for recognizing the 3-sphere. Since the first printing 
of the second edition, the latter problem has been solved by Hyam Rubinstein. 
However, there has been important progress in knot theory, most of which 
stems from the Jones polynomial, a new knot invariant found by Jones in 
1983. For a sampling of this rapidly growing field, and its mysterious con
nections with physics, see Kauffman's Knots and Physics (World Scientific, 
1991). 

Recent developments in combinatorial group theory are a natural continu
ation of two themes in the present book-the tree structure behind free groups 
and the tessellation structure behind Dehn's algorithm. The main results on 
tree structure and its generalizations may be found in Dicks and Dunwoody's 
Groups Acting on Graphs (Cambridge University Press, 1989). Dehn's algo
rithm has been generalized to many other groups which act on tessellations 
with combinatorial properties like those discovered by Dehn in the hyperbolic 
plane (see Group Theory from a Geometrical Viewpoint, edited by Ghys, 
Haefliger and Verjovsky, World Scientific, 1991). Both these lines of research 
should be accessible to readers of the present book, though a little more 
preparation is advisable. I recommend Serre's Trees (Springer-Verlag, 1980) 
and Dehn's Papers in Group Theory and Topology (Springer-Verlag, 1987). My 
own Geometry of Surfaces (Springer-Verlag, 1992) may also serve as a source 
for hyperbolic geometry, and as a replacement for the very sketchy account 
of geometric methods given in 6.2 below. 

Finally, I should mention that this edition includes numerous corrections 
sent to me by readers. I am particularly grateful to Peter Landweber, who 
contributed the most thorough critique, as well as encouragement for a second 
edition. 

Clayton, November 1992 JOHN C. STILLWELL 
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