DISCRETE MATHEMATICS AND ITS APPLICATIONS Series Editor KENNETH H. ROSEN

DIOPHANTINE ANALYSIS

JÖRN STEUDING

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2005 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20110713

International Standard Book Number-13: 978-1-4200-5720-1 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Contents

Preface

Chapte	r 1. Introduction: basic principles	
1.1.	Who was Diophantus?	1
1.2.	Pythagorean triples	2
1.3.	Fermat's last theorem	3
1.4.	The method of infinite descent	4
1.5.	Cantor's paradise	6
1.6.	Irrationality of e	7
1.7.	Irrationality of π	8
1.8.	Approximating with rationals	10
1.9.	Linear diophantine equations	12
Exer	cises	14
Chapte	r 2. Classical approximation theorems	
2.1.	Dirichlet's approximation theorem	17
2.2.	A first irrationality criterion	19
2.3.	The order of approximation	19
2.4.	Kronecker's approximation theorem	21
2.5.	Billiard	22
2.6.	Uniform distribution	23
2.7.	The Farey sequence	25
2.8.	Mediants and Ford circles	26
2.9.	Hurwitz' theorem	28
2.10.	Padé approximation	30
Exer	cises	32
Chapte	r 3. Continued fractions	
3.1.	The Euclidean algorithm revisited and calendars	36
3.2.	Finite continued fractions	37
3.3.	Interlude: Egyptian fractions	39
3.4.	Infinite continued fractions	42
3.5.	Approximating with convergents	43
3.6.	The law of best approximations	44
3.7.	Consecutive convergents	45
3.8.	The continued fraction for e	46
Exer	cises	49

Chapter 4. The irrationality of $\zeta(3)$	
4.1. The Riemann zeta-function	52
4.2. Apéry's theorem	54
4.3. Approximating $\zeta(3)$	54
4.4. A recursion formula	56
4.5. The speed of convergence	58
4.6. Final steps in the proof	60
4.7. An irrationality measure	62
4.8. A non-simple continued fraction	63
4.9. Beukers' proof	64
Notes on recent results	66
Exercises	66
Chapter 5. Quadratic irrationals	
5.1. Fibonacci numbers and paper folding	71
5.2. Periodic continued fractions	73
5.3. Galois' theorem	75
5.4. Square roots	77
5.5. Equivalent numbers	78
5.6. Serret's theorem	79
5.7. The Markoff spectrum	80
5.8. Badly approximable numbers	82
Notes on the metric theory	82
Exercises	84
Chapter 6. The Pell equation	
6.1. The cattle problem	88
6.2. Lattice points on hyperbolas	90
6.3. An infinitude of solutions	92
6.4. The minimal solution	94
6.5. The group of solutions	95
6.6. The minus equation	96
6.7. The polynomial Pell equation	97
6.8. Nathanson's theorem	100
Notes for further reading	102
Exercises	103
Chapter 7. Factoring with continued fractions	
7.1. The RSA cryptosystem	107
7.2. A diophantine attack on RSA	109
7.3. An old idea of Fermat	110
7.4. CFRAC	112
7.5. Examples of failures	115
7.6. Weighted mediants and a refinement	115
Notes on primality testing	117
Exercises	118

Chapter 8. Geometry of numbers	
8.1. Minkowski's convex body theorem	120
8.2. General lattices	122
8.3. The lattice basis theorem	124
8.4. Sums of squares	125
8.5. Applications to linear and quadratic forms	128
8.6. The shortest lattice vector problem	129
8.7. Gram–Schmidt and consequences	131
8.8. Lattice reduction in higher dimensions	132
8.9. The LLL-algorithm	134
8.10. The small integer problem	136
Notes on sphere packings	136
Exercises	137
Chapter 9. Transcendental numbers	
9.1. Algebraic vs. transcendental	141
9.2. Liouville's theorem	142
9.3. Liouville numbers	144
9.4. The transcendence of e	145
9.5. The transcendence of π	147
9.6. Squaring the circle?	149
Notes on transcendental numbers	151
Exercises	152
Chapter 10. The theorem of Roth	
10.1. Roth's theorem	155
10.2. Thue equations	156
10.3. Finite vs. infinite	158
10.4. Differential operators and indices	160
10.5. Outline of Roth's method	162
10.6. Siegel's lemma	164
10.7. The index theorem	165
10.8. Wronskians and Roth's lemma	167
10.9. Final steps in Roth's proof	171
Notes for further reading	173
Exercises	174
Chapter 11. The <i>abc</i> -conjecture	
11.1. Hilbert's tenth problem	177
11.2. The ABC -theorem for polynomials	179
11.3. Fermat's last theorem for polynomials	181
11.4. The polynomial Pell equation revisited	182
11.5. The <i>abc</i> -conjecture	183
11.6. LLL & abc	184
11.7. The Erdös–Woods conjecture	186
11.8. Fermat, Catalan & co.	187
11.9. Mordell's conjecture	189

Notes on <i>abc</i> Exercises	$\begin{array}{c} 190 \\ 192 \end{array}$
 Chapter 12. p-adic numbers 12.1. Non-Archimedean valuations 12.2. Ultrametric topology 12.3. Ostrowski's theorem 12.4. Curious convergence 12.5. Characterizing rationals 12.6. Completions of the rationals 12.7. p-adic numbers as power series 12.8. Error-free computing Notes on the p-adic interpolation of the zeta-function Exercises 	195 196 198 200 201 203 205 206 207 208
 Chapter 13. Hensel's lemma and applications 13.1. p-adic integers 13.2. Solving equations in p-adic numbers 13.3. Hensel's lemma 13.4. Units and squares 13.5. Roots of unity 13.6. Hensel's lemma revisited 13.7. Hensel lifting: factoring polynomials Notes on p-adics: what we leave out Exercises 	 213 214 216 218 219 220 221 224 224
 Chapter 14. The local-global principle 14.1. One for all and all for one 14.2. The theorem of Hasse-Minkowski 14.3. Ternary quadratics 14.4. The theorems of Chevalley and Warning 14.5. Applications and limitations 14.6. The local Fermat problem Exercises 	227 228 229 232 234 236 237
 Appendix A. Algebra and number theory A.1. Groups, rings, and fields A.2. Prime numbers A.3. Riemann's hypothesis A.4. Modular arithmetic A.5. Quadratic residues A.6. Polynomials A.7. Algebraic number fields A.8. Kummer's work on Fermat's last theorem 	239 241 242 243 245 246 247 249
Bibliography	251
Index	258