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2.10. Padé approximation 30
Exercises 32

Chapter 3. Continued fractions
3.1. The Euclidean algorithm revisited and calendars 36
3.2. Finite continued fractions 37
3.3. Interlude: Egyptian fractions 39
3.4. Infinite continued fractions 42
3.5. Approximating with convergents 43
3.6. The law of best approximations 44
3.7. Consecutive convergents 45
3.8. The continued fraction for e 46
Exercises 49

i

D
ow

nl
oa

de
d 

by
 [

Se
co

nd
a 

U
ni

ve
rs

ita
 d

i N
ap

ol
i]

 a
t 0

0:
19

 2
0 

A
pr

il 
20

15
 



Chapter 4. The irrationality of ζ(3)
4.1. The Riemann zeta-function 52
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