PRINCETON LECTURES IN ANALYSIS

Ι

FOURIER ANALYSIS

AN INTRODUCTION

Elias M. Stein & Rami Shakarchi

PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright © 2003 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW

All Rights Reserved

Library of Congress Control Number 2003103688 ISBN 978-0-691-11384-5

British Library Cataloging-in-Publication Data is available

The publisher would like to acknowledge the authors of this volume for providing the camera-ready copy from which this book was printed

Printed on acid-free paper. ∞

press.princeton.edu

Printed in the United States of America

5 7 9 10 8 6

Contents

Fore	Foreword				
Pre	Preface				
Cha	Chapter 1. The Genesis of Fourier Analysis				
1	The vibrating string	2			
	1.1 Derivation of the wave equation	6			
	1.2 Solution to the wave equation	8			
	1.3 Example: the plucked string	16			
2	The heat equation	18			
	2.1 Derivation of the heat equation	18			
	2.2 Steady-state heat equation in the disc	19			
3	Exercises	22			
4	Problem	27			
Cha	pter 2. Basic Properties of Fourier Series	29			
1	Examples and formulation of the problem	30			
	1.1 Main definitions and some examples	34			
2	Uniqueness of Fourier series	39			
3	Convolutions	44			
4	Good kernels	48			
5	Cesàro and Abel summability: applications to Fourier series	51			
	5.1 Cesàro means and summation	51			
	5.2 Fejér's theorem	52			
	5.3 Abel means and summation	54			
	5.4 The Poisson kernel and Dirichlet's problem in the				
	unit disc	55			
6	Exercises	58			
7	Problems	65			
Cha	pter 3. Convergence of Fourier Series	69			
1	Mean-square convergence of Fourier series	70			
	1.1 Vector spaces and inner products	70			
	1.2 Proof of mean-square convergence	76			
2	Return to pointwise convergence	81			
	2.1 A local result	81			
	2.2 A continuous function with diverging Fourier series	83			

3	Exercises	87
4	Problems	95
Cha	pter 4. Some Applications of Fourier Series	100
1	The isoperimetric inequality	101
2	Weyl's equidistribution theorem	105
3	A continuous but nowhere differentiable function	113
4	The heat equation on the circle	118
5	Exercises	120
6	Problems	125
Cha	pter 5. The Fourier Transform on ${\mathbb R}$	129
1	Elementary theory of the Fourier transform	131
	1.1 Integration of functions on the real line	131
	1.2 Definition of the Fourier transform	134
	1.3 The Schwartz space	134
	1.4 The Fourier transform on \mathcal{S}	136
	1.5 The Fourier inversion	140
	1.6 The Plancherel formula	142
	1.7 Extension to functions of moderate decrease	144
	1.8 The Weierstrass approximation theorem	144
2	Applications to some partial differential equations	145
	2.1 The time-dependent heat equation on the real line	145
	2.2 The steady-state heat equation in the upper half-	1/0
3	The Poisson summation formula	153
0	3.1 Theta and zeta functions	155
	3.2 Heat kernels	156
	3.3 Poisson kernels	157
4	The Heisenberg uncertainty principle	158
5	Exercises	161
6	Problems	169
Cha	pter 6. The Fourier Transform on \mathbb{R}^d	175
1	Preliminaries	176
	1.1 Symmetries	176
	1.2 Integration on \mathbb{R}^d	178
2	Elementary theory of the Fourier transform	180
3	The wave equation in $\mathbb{R}^d \times \mathbb{R}$	184
	3.1 Solution in terms of Fourier transforms	184
	3.2 The wave equation in $\mathbb{R}^3 \times \mathbb{R}$	189

xiv

	3.3	The wave equation in $\mathbb{R}^2 \times \mathbb{R}$: descent	194	
4	Radial symmetry and Bessel functions			
5	The Radon transform and some of its applications			
	5.1	The X-ray transform in \mathbb{R}^2	199	
	5.2	The Radon transform in \mathbb{R}^3	201	
	5.3	A note about plane waves	207	
6	Exerc	cises	207	
7	Prob	ems	212	
Cha	pter 7	7. Finite Fourier Analysis	218	
1	Fouri	er analysis on $\mathbb{Z}(N)$	219	
	1.1	The group $\mathbb{Z}(N)$	219	
	1.2	Fourier inversion theorem and Plancherel identity		
		on $\mathbb{Z}(N)$	221	
	1.3	The fast Fourier transform	224	
2	Fouri	er analysis on finite abelian groups	226	
	2.1	Abelian groups	226	
	2.2	Characters	230	
	2.3	The orthogonality relations	232	
	2.4	Characters as a total family	233	
	2.5	Fourier inversion and Plancherel formula	235	
3	Exerc	cises	236	
4	Probl	lems	239	
Cha	pter 8	8. Dirichlet's Theorem	241	
1	A litt	le elementary number theory	241	
	1.1	The fundamental theorem of arithmetic	241	
	1.2	The infinitude of primes	244	
2	Diric	hlet's theorem	252	
	2.1	Fourier analysis, Dirichlet characters, and reduc-		
		tion of the theorem	254	
	2.2	Dirichlet <i>L</i> -functions	255	
3	Proof	f of the theorem	258	
	3.1	Logarithms	258	
	3.2	L-functions	261	
	3.3	Non-vanishing of the <i>L</i> -function	265	
4	Exerc	cises	275	
5	Prob	lems	279	
App	endix	: Integration	281	
1	Definition of the Riemann integral			

	1.1	Basic properties	282	
	1.2	Sets of measure zero and discontinuities of inte-		
		grable functions	286	
2	Mult	iple integrals	289	
	2.1	The Riemann integral in \mathbb{R}^d	289	
	2.2	Repeated integrals	291	
	2.3	The change of variables formula	292	
	2.4	Spherical coordinates	293	
3	Impr	oper integrals. Integration over \mathbb{R}^d	294	
	3.1	Integration of functions of moderate decrease	294	
	3.2	Repeated integrals	295	
	3.3	Spherical coordinates	297	
Not	Notes and References			
Bib	Bibliography			
Sym	nbol G	lossary	303	
Inde	ex		305	
