

ø

PRINCETON LECTURES IN ANALYSIS

Π

COMPLEX ANALYSIS

Elias M. Stein &

Rami Shakarchi

PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD

Contents

Foreword		vii
Intr	Introduction	
Cha	apter 1. Preliminaries to Complex Analysis	1
1	Complex numbers and the complex plane	1
	1.1 Basic properties	1
	1.2 Convergence	5
	1.3 Sets in the complex plane	5
2	Functions on the complex plane	8
	2.1 Continuous functions	8
	2.2 Holomorphic functions	8
	2.3 Power series	14
3	Integration along curves	18
4	Exercises	24
Cha	apter 2. Cauchy's Theorem and Its Applications	32
1	Goursat's theorem	34
· 2	Local existence of primitives and Cauchy's theorem in a	
	disc	37
3	Evaluation of some integrals	41
4	Cauchy's integral formulas	45
5	Further applications	53
	5.1 Morera's theorem	53
	5.2 Sequences of holomorphic functions	53
	5.3 Holomorphic functions defined in terms of integrals	55
	5.4 Schwarz reflection principle	57
	5.5 Runge's approximation theorem	60
6	Exercises	64
7	Problems	67
Cha	apter 3. Meromorphic Functions and the Logarithm	71
1	Zeros and poles	, 72
2	The residue formula	76
	2.1 Examples	77
3	Singularities and meromorphic functions	83
4	The argument principle and applications	89

5	Homotopies and simply connected domains	93
6	The complex logarithm	97
7	Fourier series and harmonic functions	101
8	Exercises	103
9	Problems	108
Cha	pter 4. The Fourier Transform	111
1	The class \mathfrak{F}	113
2	Action of the Fourier transform on $\mathfrak F$	$^{\cdot}114$
3	Paley-Wiener theorem	121
4	Exercises	127
5	Problems	131
Cha	Chapter 5. Entire Functions	
1	Jensen's formula	135
2	Functions of finite order	138
3	Infinite products	140
	3.1 Generalities	140
	3.2 Example: the product formula for the sine function	142
4	Weierstrass infinite products	145
5	Hadamard's factorization theorem	147
6	Exercises	153
7	Problems	156
Cha	pter 6. The Gamma and Zeta Functions	159
1	The gamma function	160
	1.1 Analytic continuation	161
	1.2 Further properties of Γ	163
2	The zeta function	168
	2.1 Functional equation and analytic continuation	168
3	Exercises	174
4	Problems	179
Cha	pter 7. The Zeta Function and Prime Number The-	
0	rem	181
1	Zeros of the zeta function	182
	1.1 Estimates for $1/\zeta(s)$	* 187
2	Reduction to the functions ψ and ψ_1	188
	2.1 Proof of the asymptotics for ψ_1	194
No	ote on interchanging double sums	197
3	Exercises	199

CON	TENTS	xiii
4	Problems	203
Cha	pter 8. Conformal Mappings	205
1	Conformal equivalence and examples	206
	1.1 The disc and upper half-plane	208
	1.2 Further examples	209
	1.3 The Dirichlet problem in a strip	212
2	The Schwarz lemma; automorphisms of the disc and upper	
	half-plane	218
	2.1 Automorphisms of the disc	219
	2.2 Automorphisms of the upper half-plane	221
3	The Riemann mapping theorem	224
	3.1 Necessary conditions and statement of the theorem	224
	3.2 Montel's theorem	225
	3.3 Proof of the Riemann mapping theorem	228
4	Conformal mappings onto polygons	231
	4.1 Some examples	231
	4.2 The Schwarz-Christoffel integral	235
	4.3 Boundary behavior	238
	4.4 The mapping formula	241
	4.5 Return to elliptic integrals	245
5	Exercises	248
6	Problems	254
Cha	pter 9. An Introduction to Elliptic Functions	261
1	Elliptic functions	262
	1.1 Liouville's theorems	264
	1.2 The Weierstrass \wp function	266
2	The modular character of elliptic functions and Eisenstein	
	series	273
	2.1 Eisenstein series	273
	2.2 Eisenstein series and divisor functions	276
3	Exercises	278
4	Problems	281
Cha	pter 10. Applications of Theta Functions	283
1	Product formula for the Jacobi theta function	• <u>284</u>
	1.1 Further transformation laws	289
2	Generating functions	293
3	The theorems about sums of squares	296
	3.1 The two-squares theorem	297

CONTENTS

Ý

	3.2 The four-squares theorem	304
4	Exercises	309
5	Problems	314
App	pendix A: Asymptotics	318
1	Bessel functions	319
2	Laplace's method; Stirling's formula	323
3	The Airy function	328
4	The partition function	334
5	Problems	341
App	pendix B: Simple Connectivity and Jordan Curve	
	Theorem	344
1	Equivalent formulations of simple connectivity	345
2	The Jordan curve theorem	351
	2.1 Proof of a general form of Cauchy's theorem	361
Not	es and References	365
\mathbf{Bib}	Bibliography	
Syn	abol Glossary	373
Inde	ex	375

xiv