STATISTICAL LEARNING FOR BIG DEPENDENT DATA

DANIEL PEÑA

Universidad Carlos III de Madrid Madrid, Spain

RUEY S. TSAY

University of Chicago Chicago, United States

This first edition first published 2021 © 2021 John Wiley and Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Daniel Peña and Ruey S. Tsay to be identified as the authors of this work has been asserted in accordance with law.

Registered Office

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Peña, Daniel, 1948- author. | Tsay, Ruey S., 1951- author. Title: Statistical learning for big dependent data / Daniel Peña, Ruey S.

Description: First edition. | Hoboken, NJ: Wiley, 2021. | Series: Wiley series in probability and statistics | Includes bibliographical references and index.

Identifiers: LCCN 2020026630 (print) | LCCN 2020026631 (ebook) | ISBN 9781119417385 (cloth) | ISBN 9781119417392 (adobe pdf) | ISBN 9781119417415 (epub) | ISBN 9781119417408 (obook)

Subjects: LCSH: Big data-Mathematics. | Time-series analysis. | Data mining-Statistical methods. | Forecasting-Statistical methods.

Classification: LCC QA76.9.B45 P45 2021 (print) | LCC QA76.9.B45 (ebook) DDC 005.7-dc23

LC record available at https://lccn.loc.gov/2020026630 LC ebook record available at https://lccn.loc.gov/2020026631

Cover Design: Wiley

Cover Images: Colorful graph Courtesy of Daniel Peña and Ruey S.Tsay, Abstract background © duncan1890/Getty Images

Set in 10/12pt TimesTenLTStd by SPi Global, Chennai, India

CONTENTS

PF	REFA	CE			xvii			
1.	. INTRODUCTION TO BIG DEPENDENT DATA							
	1.1	Exam	ples of D	ependent Data	2			
	1.2	Stocha	astic Proc	esses	9			
		1.2.1	Scalar I	Processes	9			
			1.2.1.1	Stationarity	10			
			1.2.1.2	White Noise Process	12			
			1.2.1.3	Conditional Distribution	12			
		1.2.2	Vector	Processes	12			
			1.2.2.1	Vector White Noises	15			
			1.2.2.2	Invertibility	15			
	1.3	Samp	le Momei	nts of Stationary Vector Process	15			
		1.3.1	Sample	Mean	16			
		1.3.2	Sample	Covariance and Correlation Matrices	17			
	1.4	Nonst	ationary	Processes	21			
	1.5	Princi	pal Comp	oonent Analysis	23			
		1.5.1	Discuss	ion	26			
		1.5.2	Propert	ies of the PCs	27			
	1.6	Effect	s of Seria	l Dependence	31			

	Appendix 1.A: Some Matrix Theory				
	Exer			35	
	Refe	rences		36	
2.	LINE	AR UN	IIVARIATE TIME SERIES	37	
	2.1	Visua	lizing a Large Set of Time Series	39	
		2.1.1	Dynamic Plots	39	
		2.1.2	Static Plots	44	
	2.2	Statio	onary ARMA Models	49	
		2.2.1	The Autoregressive Process	50	
			2.2.1.1 Autocorrelation Functions	51	
		2.2.2	The Moving Average Process	52	
		2.2.3	The ARMA Process	54	
		2.2.4	Linear Combinations of ARMA Processes	55	
	2.3	Spect	ral Analysis of Stationary Processes	58	
		2.3.1	Fitting Harmonic Functions to a Time Series	58	
		2.3.2	The Periodogram	59	
		2.3.3	The Spectral Density Function and Its Estimation	61	
	2.4	Integr	rated Processes	64	
		2.4.1	The Random Walk Process	64	
		2.4.2	ARIMA Models	65	
		2.4.3	Seasonal ARIMA Models	67	
			2.4.3.1 The Airline Model	69	
	2.5	Struct	tural and State Space Models	71	
		2.5.1	Structural Time Series Models	71	
		2.5.2	State-Space Models	72	
		2.5.3	The Kalman Filter	76	
	2.6	Forec	asting with Linear Models	78	
		2.6.1	Computing Optimal Predictors	78	
		2.6.2	Variances of the Predictions	80	
		2.6.3	Measuring Predictability	81	
	2.7	Mode	eling a Set of Time Series	82	
		2.7.1	Data Transformation	83	
		2.7.2	Testing for White Noise	85	
		2.7.3	Determination of the Difference Order	85	
		2.7.4	Model Identification	87	
	2.8	Estim	ation and Information Criteria	87	
		2.8.1	Conditional Likelihood	87	
		2.8.2	On-line Estimation	88	
		2.8.3	Maximum Likelihood (ML) Estimation	90	

				CONTENTS	IX
		2.8.4	Model Selection		91
			2.8.4.1 The Akaike Information Criterion (AIC)	91
			2.8.4.2 The Bayesian Information Criterion (BIG	C)	92
			2.8.4.3 Other Criteria		92
			2.8.4.4 Cross-Validation		93
	2.9	Diagno	ostic Checking		95
		2.9.1	Residual Plot		96
		2.9.2	Portmanteau Test for Residual Serial Correlations		96
		2.9.3	Homoscedastic Tests		97
		2.9.4	Normality Tests		98
		2.9.5	Checking for Deterministic Components		98
	2.10	Foreca	sting		100
		2.10.1	Out-of-Sample Forecasts		100
		2.10.2	Forecasting with Model Averaging		100
		2.10.3	Forecasting with Shrinkage Estimators		102
	Appe	ndix 2.	A: Difference Equations		103
	Exerc	cises			108
	Refer	rences			108
3.	ANAI	LYSIS	OF MULTIVARIATE TIME SERIES		111
	3.1	Transf	er Function Models		112
		3.1.1	Single Input and Single Output		112
		3.1.2	Multiple Inputs and Multiple Outputs		118
	3.2	Vector	AR Models		118
		3.2.1	Impulse Response Function		120
		3.2.2	Some Special Cases		121
		3.2.3	Estimation		122
		3.2.4	Model Building		123
		3.2.5	Prediction		125
		3.2.6	Forecast Error Variance Decomposition		127
	3.3	Vector	Moving-Average Models		135
		3.3.1	Properties of VMA Models		136
		3.3.2	VMA Modeling		136
	3.4	Station	nary VARMA Models		140
		3.4.1	Are VAR Models Sufficient?		140
		3.4.2	Properties of VARMA Models		141
		3.4.3	Modeling VARMA Process		141
		3.4.4	Use of VARMA Models		142
	3.5	Unit R	loots and Co-Integration		147
		3.5.1	Spurious Regression		148

CONTE	

		3.5.2	Linear Combinations of a Vector Process	148
		3.5.3	Co-integration Co-integration	149
		3.5.4	Over-Differencing	150
	3.6	Error	-Correction Models	151
		3.6.1	Co-integration Test	152
	Exer	cises		157
	Refe	rences		157
4.	HAN	IDLING	HETEROGENEITY IN MANY TIME SERIES	161
	4.1	Interv	vention Analysis	162
		4.1.1	Intervention with Indicator Variables	163
		4.1.2	Intervention with Step Functions	165
		4.1.3	Intervention with General Exogenous Variables	166
		4.1.4	Building an Intervention Model	166
	4.2	Estim	ation of Missing Values	170
		4.2.1	Univariate Interpolation	170
		4.2.2	Multivariate Interpolation	172
	4.3	Outlie	ers in Vector Time Series	174
		4.3.1	Multivariate Additive Outliers	175
			4.3.1.1 Effects on Residuals and Estimation	176
		4.3.2	Multivariate Level Shift or Structural Break	177
			4.3.2.1 Effects on Residuals and Estimation	177
		4.3.3	Other Types of Outliers	178
			4.3.3.1 Multivariate Innovative Outliers	178
			4.3.3.2 Transitory Change	179
			4.3.3.3 Ramp Shift	179
		4.3.4	Masking and Swamping	180
	4.4	Univa	ariate Outlier Detection	180
		4.4.1	Other Procedures for Univariate Outlier Detection	183
		4.4.2	New Approaches to Outlier Detection	184
	4.5	Multi	variate Outliers Detection	189
		4.5.1	VARMA Outlier Detection	189
		4.5.2	Outlier Detection by Projections	190
		4.5.3	A Projection Algorithm for Outliers Detection	192
		4.5.4	The Nonstationary Case	193
	4.6	Robu	st Estimation	196
	4.7	Heter	rogeneity for Parameter Changes	199
		4.7.1	Parameter Changes in Univariate Time Series	199
		4.7.2	Covariance Changes in Multivariate Time Series	200
			4.7.2.1 Detecting Multiple Covariance Changes	202
			4.7.2.2 LR Test	202

				CONTENTS	ΧI
	Appe	endix 4.	A: Cusun	n Algorithms	204
	• •			ng Univariate LS	204
		4.A.2	Detection	ng Multivariate Level Shift	204
		4.A.3	Detection	ng Multiple Covariance Changes	206
	Exerc	cises			206
	Refe	rences			207
5.	CLUS	STERIN	IG AND	CLASSIFICATION OF TIME SERIES	211
	5.1	Distan	ices and I	Dissimilarities	212
		5.1.1	Distanc	e Between Univariate Time Series	212
		5.1.2	Dissimi	larities Between Univariate Series	215
		5.1.3	Dissimi	larities Based on Cross-Linear Dependency	222
	5.2	Hierar	chical Cl	ustering of Time Series	228
		5.2.1	Criteria	for Defining Distances Between Groups	228
		5.2.2	The De	ndrogram	229
		5.2.3	Selectin	g the Number of Groups	229
			5.2.3.1	The Height and Step Plots	229
			5.2.3.2	Silhouette Statistic	230
			5.2.3.3	The Gap Statistic	233
	5.3	Cluste	ring by V	ariables	243
		5.3.1	The k -n	neans Algorithm	244
			5.3.1.1	Number of Groups	246
		5.3.2	k-Medo	ids	250
		5.3.3	Model-	Based Clustering by Variables	252
			5.3.3.1	Maximum Likelihood (ML) Estimation of the AR Mixture Model	253
			5.3.3.2	The EM Algorithm	254
			5.3.3.3	Estimation of Mixture of Multivariate Normals	256
			5.3.3.4	Bayesian Estimation	257
			5.3.3.5	Clustering with Structural Breaks	258
		5.3.4	Clusteri	ng by Projections	259
	5.4	Classif	fication w	ith Time Series	264
		5.4.1	Classific	cation Among a Set of Models	264
		5.4.2	Checkir	ng the Classification Rule	267
	5.5	Classif	fication w	ith Features	267
		5.5.1	Linear l	Discriminant Function	268
		5.5.2	Quadra	tic Classification and Admissible Functions	269
		5.5.3	Logistic	Regression	270
	5.6	Nonpa	rametric	Classification	277
		5.6.1	Nearest	Neighbors	277
		5.6.2	Support	Vector Machines	278

			5.6.2.1 Linearly Separable Problems	279
			5.6.2.2 Nonlinearly Separable Problems	282
		5.6.3	Density Estimation	284
	5.7	Other	Classification Problems and Methods	286
	Exerc	cises		287
	Refer	rences		288
6.	DYN	AMIC F	FACTOR MODELS	291
	6.1	The D	FM for Stationary Series	293
		6.1.1	Properties of the Covariance Matrices	295
			6.1.1.1 The Exact DFM	295
			6.1.1.2 The Approximate DFM	297
		6.1.2	Dynamic Factor and VARMA Models	299
	6.2	Fitting	g a Stationary DFM to Data	301
		6.2.1	Principal Components (PC) Estimation	301
		6.2.2	Pooled PC Estimator	303
		6.2.3	Generalized PC Estimator	303
		6.2.4	ML Estimation	304
		6.2.5	Selecting the Number of Factors	305
			6.2.5.1 Rank Testing via Canonical Correlation	306
			6.2.5.2 Testing a Jump in Eigenvalues	307
			6.2.5.3 Using Information Criteria	307
		6.2.6	8	308
		6.2.7	Alternative Formulations of the DFM	314
	6.3	Gener	ralized DFM (GDFM) for Stationary Series	315
		6.3.1	Some Properties of the GDFM	316
		6.3.2	GDFM and VARMA Models	317
	6.4	•	mic Principal Components	317
		6.4.1	Dynamic Principal Components for Optimal Reconstruction	317
		6.4.2	One-Sided DPCs	318
		6.4.3	8	320
		6.4.4	One Sided DPC and GDFM Estimation	321
	6.5	DFM 1	for Nonstationary Series	324
		6.5.1	Cointegration and DFM	329
	6.6	GDFN	M for Nonstationary Series	330
		6.6.1	Estimation by Generalized DPC	330
	6.7	Outlie	ers in DFMs	333
		6.7.1	Factor and Idiosyncratic Outliers	333
		6.7.2	A Procedure to Find Outliers in DFM	335
	6.8	DFM	with Cluster Structure	336
		6.8.1	Fitting DFMCS	337

				CONTENTS	xiii
	6.9	Some	Extensions of DFM		344
	6.10	High-I	Dimensional Case		345
		6.10.1	Sparse PCs		345
		6.10.2	A Structural-FM Approach		347
		6.10.3	Estimation		348
		6.10.4	Selecting the Number of Common Factors		349
		6.10.5	Asymptotic Properties of Loading Estimates		351
	Appe	endix 6.	A: Some R Commands		352
	Exer	cises			353
	Refe	rences			354
7.	FOR	ECAST	ING WITH BIG DEPENDENT DATA		359
	7.1	Regula	arized Linear Models		360
		7.1.1	Properties of Lasso Estimator		362
		7.1.2	Some Extensions of Lasso Regression		366
			7.1.2.1 Adaptive Lasso		367
			7.1.2.2 Group Lasso		367
			7.1.2.3 Elastic Net		368
			7.1.2.4 Fused Lasso		368
			7.1.2.5 SCAD Penalty		368
	7.2	Impac	ts of Dynamic Dependence on Lasso		377
	7.3	Lasso	for Dependent Data		383
	7.4	Princip	pal Component Regression and Diffusion Index		388
	7.5	Partial	Least Squares		392
	7.6	Boosti	ng		397
		7.6.1	2 0		399
		7.6.2	Choices of Weak Learner		399
		7.6.3	Boosting for Classification		403
	7.7	Mixed	-Frequency Data and Nowcasting		404
		7.7.1	Midas Regression		405
		7.7.2	Nowcasting		406
	7.8	_	Serial Dependence		413
	Exer				414
	Refe	rences			414
8.	MAC	HINE L	EARNING OF BIG DEPENDENT DATA		419
	8.1	Regres	ssion Trees and Random Forests		420
		8.1.1	Growing Tree		420
		8.1.2	Pruning		422
		8.1.3	Classification Trees		422
		8.1.4	Random Forests		424

	8.2	Neura	l Networks	427
		8.2.1	Network Training	429
	8.3	Deep	Learning	436
		8.3.1	Types of Deep Networks	436
		8.3.2	Recurrent NN	437
		8.3.3	Activation Functions for Deep Learning	439
		8.3.4	Training Deep Networks	440
			8.3.4.1 Long Short-Term Memory Model	440
			8.3.4.2 Training Algorithm	441
	8.4	Some	Applications	442
		8.4.1	The Package: keras	442
		8.4.2	Dropout Layer	449
		8.4.3	Application of Convolution Networks	450
		8.4.4	Application of LSTM	457
	8.5	Deep	Generative Models	466
	8.6	Reinfo	orcement Learning	466
	Exer	cises		467
	Refe	rences		468
9.	SPA	TIO-TE	MPORAL DEPENDENT DATA	471
	9.1	Exam	ples and Visualization of Spatio Temporal Data	a 472
	9.2	Spatia	l Processes and Data Analysis	477
	9.3	Geost	atistical Processes	479
		9.3.1	Stationary Variogram	480
		9.3.2	Examples of Semivariogram	480
		9.3.3	Stationary Covariance Function	482
		9.3.4	Estimation of Variogram	483
		9.3.5	Testing Spatial Dependence	483
		9.3.6	Kriging	484
			9.3.6.1 Simple Kriging	484
			9.3.6.2 Ordinary Kriging	486
			9.3.6.3 Universal Kriging	487
	9.4	Lattic	e Processes	488
		9.4.1	Markov-Type Models	488
	9.5	Spatia	l Point Processes	491
		9.5.1	Second-Order Intensity	492
	9.6	S-T P	rocesses and Analysis	495
		9.6.1	Basic Properties	496
		9.6.2	Some Nonseparable Covariance Functions	498
		9.6.3	S-T Variogram	499
		9.6.4	S-T Kriging	500

			CONT	ENTS	χV
	9.7	Descr	iptive S-T Models		504
		9.7.1	Random Effects with S-T Basis Functions		505
		9.7.2	Random Effects with Spatial Basis Functions		506
		9.7.3	Fixed Rank Kriging		507
		9.7.4	Spatial Principal Component Analysis		510
		9.7.5	Random Effects with Temporal Basis Functions		514
	9.8	Dynai	mic S-T Models		519
		9.8.1	Space-Time Autoregressive Moving-Average Models		520
		9.8.2	S-T Component Models		521
		9.8.3	S-T Factor Models		521
		9.8.4	S-T HMs		522
	App	endix 9.	A: Some R Packages and Commands		523
	Exer	cises			525
	Refe	rences			525
INI	DEX				529