Daniele Funaro

Spectral Elements for Transport-Dominated Equations

With 97 Figures and 12 Tables

Author

Daniele Funaro Dipartimento di Matematica Università di Modena Via Campi 213/B 41100 Modena, Italy e-mail: funaro@unimo.it http://www.matematica.unimo.it/pfunaeng.htm

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Funaro, Daniele: Spectral elements for transport dominated equations / Daniele Funaro. - Berlin; Heidelberg; New York; Barcelona; Budapest; Hong Kong; London; Milan; Paris; Santa Clara; Singapore; Tokyo: Springer, 1997 (Lecture notes in computational science and engineering; 1) ISBN 978-3-540-62649-7 ISBN 978-3-642-59185-3 (eBook) DOI 10.1007/978-3-642-59185-3 NE: GT

Front cover photo by Micol Pennacchio

Mathematics Subject Classification (1991): primary: 65M70,65N22 secondary: 76D10, 65D99, 65Y99

ISBN 978-3-540-62649-7

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag, Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1997

Originally published by Springer-Verlag Berlin Heidelberg New York in 1997

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover Design: Friedhelm Steinen-Broo, Estudio Calamar, Spain Cover: design & production GmbH, Heidelberg Typesetting: Camera-ready by the author SPIN 10565167 41/3143 - 5 4 3 2 1 0 - Printed on acid-free paper

Contents

т.	The I disson equation in the square	
	1.1 Statement of the problem and preliminary results	1
	1.2 The collocation method for the Poisson equation	3
	1.3 Convergence analysis of the collocation method	8
	1.4 Numerical implementation of the collocation method	13
	1.5 The numerical algorithm for the Poisson equation	18
	1.6 Application to the eikonal equation	21
	1.7 More about boundary conditions	25
	1.8 A Sturm-Liouville problem	26
2.	Steady transport-diffusion equations	
	2.1 A more general boundary-value problem	31
	2.2 The upwind grid	33
	2.3 The collocation method at the upwind grid	42
	2.4 The numerical algorithm for the transport-diffusion equation	48
3.	Other kinds of boundary conditions	
	3.1 Neumann-type boundary conditions	55
	3.2 Boundary conditions in weak form	58
	3.3 The numerical algorithm for the Neumann problem	62
	3.4 More general boundary conditions	68
	3.5 An approximation of the Poincaré-Steklov operator	72
4.	The spectral element method	
	4.1 Complex geometries	75
	4.2 The Poisson equation in a complex domain	83
	4.3 Approximation by spectral elements	86
	4.4 An iterative algorithm for the domain decomposition method	90

4.5 Improvements	103
4.6 Transport-diffusion equations in complex geometries	110
4.7 A model problem in Electrostatics	122
5. Time discretization	
5.1 Time-dependent advection-diffusion problems	127
5.2 The incompressible Navier-Stokes equations	137
5.3 Approximation of the Navier-Stokes equations	140
5.4 The nonlinear Schrödinger equation	150
5.5 Semiconductor device equations	155
6. Extensions	
6.1 A posteriori error estimators	163
6.2 Pure hyperbolic problems	168
6.3 Elements with bended sides: application to the dam problem	175
6.4 The Poisson equation in 3-D	181
A. Appendix	
A.1 Characterizing properties of Legendre polynomials	187
A.2 Zeroes and quadrature formulas	189
A.3 Interpolation and evaluation of derivatives	192
A.4 Approximation results	193
A.5 List of symbols	194
References	
Index	