Undergraduate Texts in Mathematics

Editors
F. W. Gehring
P. R. Halmos

Advisory Board
C. DePrima
I. Herstein

Undergraduate Texts in Mathematics

Apostol: Introduction to Analytic Number Theory.
1976. xii, 338 pages. 24 illus.

Armstrong: Basic Topology.
1983. xii, 260 pages. 132 illus.

Bak/Newman: Complex Analysis.
1982. x, 224 pages. 69 illus.

Banchoff/Wermer: Linear Algebra
Through Geometry.
1983. x, 257 pages. 81 illus.

Childs: A Concrete Introduction to
Higher Algebra.
1979. xiv, 338 pages. 8 illus.

Chung: Elementary Probability Theory with Stochastic Processes.
1975. xvi, 325 pages. 36 illus.

Croom: Basic Concepts of Algebraic Topology.
1978. x, 177 pages. 46 illus.

Fischer: Intermediate Real Analysis. 1983. xiv, 770 pages. 100 illus.

Fleming: Functions of Several Variables. Second edition.
1977. xi, 411 pages. 96 illus.

Foulds: Optimization Techniques: An Introduction.
1981. xii, 502 pages. 72 illus.

Franklin: Methods of Mathematical
Economics. Linear and Nonlinear
Programming. Fixed-Point Theorems. 1980. x, 297 pages. 38 illus.

Halmos: Finite-Dimensional Vector Spaces. Second edition. 1974. viii, 200 pages.

Halmos: Naive Set Theory. 1974, vii, 104 pages.

Iooss/Joseph: Elementary Stability and Bifurcation Theory.
1980. xv, 286 pages. 47 illus.

Kemeny/Snell: Finite Markov Chains. 1976. ix, 224 pages. 11 illus.

Lang: Undergraduate Analysis
1983. xiii, 545 pages. 52 illus.

Lax/Burstein/Lax: Calculus with Applications and Computing, Volume 1.
1976. xi, 513 pages. 170 illus.

LeCuyer: College Mathematics with
A Programming Language.
1978. xii, 420 pages. 144 illus.

Macki/Strauss: Introduction to Optimal Control Theory.
1981. xiii, 168 pages. 68 illus.

Kennan T. Smith

Primer of Modern Analysis

(Directions for Knowing All Dark Things,
Rhind Papyrus, 1800 b.c.)

Springer Science+Business Media, LLC

Kennan T. Smith
Mathematics Department
Oregon State University
Corvallis, Oregon 97331
U.S.A.

Editorial Board

P. R. Halmos
Indiana University
Department of Mathematics
Bloomington, Indiana 47405
U.S.A.
F. W. Gehring
University of Michigan
Department of Mathematics
Ann Arbor, Michigan 48104
U.S.A.

AMS Subject Classification: 26-o I, 28 -or

Library of Congress Cataloging in Publication Data
Smith, Kennan T., 1926-
Primer of modern analysis.
(Undergraduate texts in mathematics)
Includes index.
I. Mathematical analysis. I. Title. II. Series.

QA300.S77 $1983 \quad 515 \quad 83-538$
The original version of this book was published by Bogden \& Quigley, Inc., Publishers, in 197 I.
© 1971 by Bogden \& Quigley, Inc., Publishers.
(C) 983 by Springer Science+Business Media New York

Originally published by Springer-Verlag Berlin Heidelberg New York Tokyo in 1983
Softcover reprint of the hardcover 2ndedition 1983
All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag, 175 Fifth Avenue, New York, N.Y. ıоо10, U.S.A.

ISBN 978-1-4612-7021-8 ISBN 978-1-4612-1144-o (eBook)
DOI 10.1007/978-1-4612-1144-0

To J.

Sreface

This book discusses some of the first principles of modern analysis. It can be used for courses at several levels, depending upon the background and ability of the students.

It was written on the premise that today's good students have unexpected enthusiasm and nerve. When hard work is put to them, they work harder and ask for more. The honors course (at the University of Wisconsin) which inspired this book was, I think, more fun than the book itself. And better. But then there is acting in teaching, and a typewriter is a poor substitute for an audience. The spontaneous, creative disorder that characterizes an exciting course becomes silly in a book. To write, one must cut and dry. Yet, I hope enough of the spontaneity, enough of the spirit of that course, is left to enable those using the book to create exciting courses of their own.

Exercises in this book are not designed for drill. They are designed to clarify the meanings of the theorems, to force an understanding of the proofs, and to call attention to points in a proof that might otherwise be overlooked. The exercises, therefore, are a real part of the theory, not a collection of side issues, and as such nearly all of them are to be done. Some drill is, of course, necessary, particularly in the calculation of integrals.

Those using the book should not feel obliged to do every proof. It is more important for teachers to explain the theorems well and to show how they are used, and why they are interesting, than to spend all the time on proofs. This is one place where the teacher has an advantage over the author. He can choose proofs that seem to him exciting or illuminating, and skip some of the others. The author, however, must do nearly all. In this book I have omitted only the proof of Fubini's theorem-in favor of a long list of applications.

Many topics in the mathematics curriculum find their best use in the calculus of several variables: for example, much linear algebra, much topology, much measure theory, and so forth. Usually students learn them as separate topics. As a result, they understand these subjects narrowly and apply them poorly. I have therefore done quite a bit of linear algebra, topology, and mea-
sure theory-but always with the applications in mind and following close behind. The result should be that students will understand both sides much better.

Part I begins with a half intuitive-half rigorous discussion of applications, chosen to arouse interest and to show the need for a precise and general theory, and then develops this theory for functions of one variable. Unusual features include the solid treatment of Taylor's formula, the discussion of real analytic functions, and the Weierstrass approximation theorem.

In Part II the differential properties of functions of several variables are studied. There is some background on metric and vector spaces, but the bulk of this part deals with applications of the implicit-function theorem to the study of surfaces and manifolds, tangent and normal planes, maximum and minimum problems in several variables and on manifolds, and so forth. Various interesting sidelights, such as the derivation of Kepler's laws of planetary motion and mini-max descriptions of eigenvalues, are included.

In Part III the integration and differentiation of measures are studied. The Lebesgue theory of integration is developed in the simple, yet perfectly general, abstract setting of outer measures, and applied in many and diverse situations, such as integration in \mathbf{R}^{n}, summation of multiple power series, and Sard's theorem on regular values of differentiable functions. The Lebesgue theory of differentiation is presented for regular Borel measures on \mathbf{R}^{n} and used, for example, in establishing the formulas for change of variable in multiple integrals. The theory of differentiation leads naturally to the study of surface area via the area measures of Hausdorff. In the final chapter I discuss the Brouwer degree of maps of spheres and its applications, developing the degree from the analytic point of view suggested by John Milnor.

Theorems, Definitions, etc., are numbered within each chapter and section. Thus, Theorem 6.3 of Chapter 8 is found in Section 6 of Chapter 8. Theorem 6.3 without any chapter reference is found in Section 6 of the chapter in which the reference is made. The chapter number and title are printed in the upper left-hand corner of each double-page spread.

The index lists most of the terms and symbols that are used and the page or pages on which they are defined. The symbols occur ahead of the terms beginning with the same letter. Thus, $|A|$ and α_{m} occur at the head of the a's.

I wish to thank my colleagues at Oregon State University and at the University of Oregon who read and commented upon earlier versions of the manuscript. These include Professors P. M. Anselone, D. S. Carter, R. B. Guenther, B. Petersen, and, particularly, R. M. Koch. Professor Norton Starr of Amherst College also read an earlier version of the manuscript and made suggestions. In addition, I wish to thank Professor D. C. Rung of The Pennsylvania State University for suggesting the title. Finally, I wish to praise Mr. Edward J. Quigley, who is a new publisher, but a good one.

It is fitting to end this preface with advice to the reader from the creator and patron saint of calculus. The following statement came in answer to the question of how he had made his famous discoverics:

Isaac Newton
"By always thinking about them, I keep the subject constantly before me and wait till the first dawnings open little by little into the full light."
K. T. S.

PREFACE TO THE SPRINGER EDITION

Rademacher's theorem on the differentiability of Lipschitz functions has been added. Applications of Rademacher's theorem and the Brouwer degree to changes of variable in multiple integrals have been added. The main addition, however, is a chapter on the results of Hestenes, Seeley, and Adams-AronszajnSmith on extension of differentiable functions of various kinds across Lipschitz graphs. A construction is given for a single extension operator which applies to functions of class C^{m}, functions of class C^{m} with bounded derivatives, functions of class C^{m} with Hölder continuous derivatives, and to Sobolev functions. It applies to many other function classes as well, but these are the ones discussed explicitly. The discussion of the Sobolev spaces requires a minimal knowledge of L^{p} spaces (mainly the Hölder and Minkowski inequalities). The theorems cover polyhedral domains, so they are of use in the numerical study of partial differential equations, as well as of theoretical interest.

K.T.S.

Preface
vii
PART I 1
CHAPTER 1 APPLICATIONS 3

1. Tangent Lines 3
2. Derivatives 5
3. Maximum and Minimum Problems 7
4. Velocity and Acceleration 8
5. Area 11
CHAPTER 2 CALCULATION OF DERIVATIVES 15
6. Limits 15
7. Limits and Derivatives 18
8. Derivatives of Sums, Products, and Quotients 22
9. Continuity 24
10. Trigonometric Functions 25
11. Composite Functions 29
12. Logarithms and Exponentials 31
CHAPTER 3 DEEPER PROPERTIES OF CONTINUOUS FUNCTIONS 34
13. Inverse Functions 34
14. Uniform Continuity 38
15. Maxima and Minima 41
16. The Mean-Value Theorem 44
17. Zero and Infinity 45
CHAPTER 4 RIEMANN INTEGRATION 50
18. Area 50
19. Integrals 53
20. Elementary Functions 58
21. Change of Variable 59
22. Integration by Parts 63
23. Riemann Sums 65
24. Arc Length 67
25. Polar Coordinates 71
26. Volume 74
27. Improper Integrals 77
CHAPTER 5 TAYLOR'S FORMULA 80
28. Taylor's Formula 80
29. Equivalent Formulas 83
30. Local Maxima and Minima 86
CHAPTER 6 SEQUENCES AND SERIES 89
31. Sequences and Series 89
32. Increasing Sequences and Positive Series 92
33. Cauchy Sequences 94
34. Sequences of Functions 98
35. Power Series 103
36. Analytic Functions 107
37. Examples 113
38. Weierstrass Approximation Theorem 117
PART II 121
CHAPTER 7 METRIC SPACES 123
39. The space \mathbf{R}^{n} 123
40. Absolute Value in \mathbf{R}^{n} 127
41. Metric Spaces 129
42. Function Spaces 130
43. Equivalent Metrics 132
44. Open and Closed Sets 134
45. Connected Spaces 138
46. Composite Functions and Subsequences 143
47. Compact Spaces 145
48. Equivalence of Absolute Values on \mathbf{R}_{n} 150
contentsxiii
49. Products 151
50. Stone-Weierstrass Approximation Theorem 152
CHAPTER 8 FUNCTIONS FROM R ${ }^{1}$ TO R ${ }^{n}$ 158
51. Lines, Half-lines, and Directions 158
52. Derivatives and Integrals 161
53. Tangent Lines, Velocity, and Acceleration 163
54. Geometric Models of \mathbf{R}^{n} 166
55. Missiles, Moons, and so on 169
56. Arc Length 174
CHAPTER 9 ALGEBRA AND GEOMETRY IN Rn 178
57. Subspaces 178
58. Bases 180
59. Orthonormal Bases 186
60. Linear Transformations 192
61. Sums and Products 196
62. Null Space and Range 198
63. Matrices and Linear Equations 202
64. Continuity of Linear Transformations 204
65. Self-adjoint Transformations 208
66. Orthogonal Transformations 212
67. Determinants 216
CHAPTER 10 LINEAR APPROXIMATION 223
68. Directional Derivatives and Partial Derivatives 223
69. The Differential 225
70. Existence of the Differential 228
71. Composite Functions 231
72. The Mean-Value Theorem 234
73. A Fixed-Point Theorem 236
74. The Inverse-Function Theorem 237
75. The Implicit-Function Theorem 245
CHAPTER 11 SURFACES 249
76. Algebraic Curves 249
77. Manifolds 253
78. Tangent Spaces 261
79. Functions on Manifolds 267
80. Quadratic Forms and Quadric Surfaces 272
CHAPTER 12 HIGHER DERIVATIVES 278
81. Second Derivatives 278
82. Higher Derivatives 279
83. The Inverse- and Implicit-Function Theorems 282
84. Taylor's Formula 284
85. Local Maxima and Minima 286
part III 289
CHAPTER 13 INTEGRATION 291
86. Introduction 291
87. Lebesgue Measure 294
88. Outer Measures 300
89. Measurability in \mathbf{R}^{n} 305
90. Measurable Functions 309
91. Definition of the Integral 312
92. Convergence Theorems 314
93. Integrable Functions 317
94. Product Measures 321
95. Functions Defined by Integrals 328
96. Convolution 333
97. Approximation Theorems 336
98. Multiple Series 339
99. Regular Values and Sard's Theorem 341
CHAPTER 14 DIFFERENTIATION 348
100. Regular Borel Measures 348
101. Differentiability Theorems 355
102. Integration of Derivatives 360
103. Change of Variable 364
104. Differentiability of Lipschitz Functions 368
CHAPTER 15 SURFACE AREA 371
105. Area Measures 371
106. Parametric Surfaces-Introductory Remarks 376
107. The Jacobian 378
108. Absolute Continuity 382
109. Variation 384
110. The Jacobian Formula for Surface Area 386
111. Examples 389
112. Polar Coordinates 392
contents $x v$
CHAPTER 16 THE BROUWER DEGREE 396
113. Introduction 396
114. The Degree for C^{∞} Functions 398
115. The Degree for Continuous Functions 403
116. Some Applications of the Degree 406
117. Change of Variable Revisited 411
GHAPTER 17 EXTENSIONS OF DIFFERENTIABLE FUNCTIONS 416
118. Introduction 416
119. Reflection Across Hyperplanes 420
120. Regularized Distance 424
121. Reflection Across Lipschitz Graphs 428
122. Reflection of Hölder Functions 432
123. Reflection of Sobolev Functions 434
124. Extension from Lipschitz Graph Domains 437
INDEX 443
