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VII 

I Preface 

This book discusses some of the first principles of modern analysis. I t can be 
used for courses at several levels, depending upon the background and ability 
of the students. 

It was written on the premise that today's good students have unexpected 
enthusiasm and nerve. When hard work is put to them, they work harder and 
ask for more. The honors course (at the University of Wisconsin) which 
inspired this book was, I think, more fun than the book itself. And better. 
But then there is acting in teaching, and a typewriter is a poor substitute for an 
audience. The spontaneous, creative disorder that characterizes an exciting 
course becomes silly in a book. To write, one must cut and dry. Yet, I hope 
enough of the spontaneity, enough of the spirit of that course, is left to enable 
those using the book to create exciting courses of their own. 

Exercises in this book are not designed for drill. They are designed to 
clarify the meanings of the theorems, to force an understanding of the proofs, 
and to call attention to points in a proof that might otherwise be overlooked. 
The exercises, therefore, are a real part of the theory, not a collection of side 
issues, and as such nearly all of them are to be done. Some drill is, of course, 
necessary, particularly in the calculation of integrals. 

Those using the book should not feel obliged to do every proof. I t is more 
important for teachers to explain the theorems well and to show how they are 
used, and why they are interesting, than to spend all the time on proofs. This 
is one place where the teacher has an advantage over the author. He can 
choose proofs that seem to him exciting or illuminating, and skip some of the 
others. The author, however, must do nearly all. In this book I have omitted 
only the proof of Fubini's theorem-in favor of a long list of applications. 

Many topics in the mathematics curriculum find their best use in the 
calculus of several variables: for example, much linear algebra, much topology, 
much measure theory, and so forth. Usually students learn them as separate 
topics. As a result, they understand these subjects narrowly and apply them 
poorly. I have therefore done quite a bit of linear algebra, topology, and mea-
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sure theory-but always with the applications in mind and following close 
behind. The result should be that students will understand both sides much 
better. 

Part I begins with a half intuitive-half rigorous discussion of applications, 
chosen to arouse interest and to show the need for a precise and general theory, 
and then develops this theory for functions of one variable. Unusual features 
include the solid treatment of Taylor's formula, the discussion of real analytic 
functions, and the Weierstrass approximation theorem. 

In Part II the differential properties of functions of several variables are 
studied. There is some background on metric and vector spaces, but the bulk 
of this part deals with applications of the implicit-function theorem to the study 
of surfaces and manifolds, tangent and normal planes, maximum and minimum 
problems in several variables and on manifolds, and so forth. Various interest
ing sidelights, such as the derivation of Kepler's laws of planetary motion and 
mini-max descriptions of eigenvalues, are included. 

In Part III the integration and differentiation of measures are studied. 
The Lebesgue theory of integration is developed in the simple, yet perfectly 
general, abstract setting of outer measures, and applied in many and diverse 
situations, such as integration in Rn, summation of multiple power series, and 
Sard's theorem on regular values of differentiable functions. The Lebesgue 
theory of differentiation is presented for regular Borel measures on Rn and used, 
for example, in establishing the formulas for change of variable in multiple 
integrals. The theory of differentiation leads naturally to the study of surface 
area via the area measures of Hausdorff. In the final chapter I discuss the 
Brouwer degree of maps of spheres and its applications, developing the degree 
from the analytic point of view suggested by John Milnor. 

Theorems, Definitions, etc., are numbered within each chapter and section. 
Thus, Theorem 6.3 of Chapter 8 is found in Section 6 of Chapter 8. Theorem 
6.3 without any chapter reference is found in Section 6 of the chapter in which 
the reference is made. The chapter number and title are printed in the upper 
left-hand corner of each double-page spread. 

The index lists most of the terms and symbols that are used and the page 
or pages on which they are defined. The symbols occur ahead of the terms 
beginning with the same letter. Thus, \A\ and am occur at the head of the a's. 

I wish to thank my colleagues at Oregon State University and at the Uni
versity of Oregon who read and commented upon earlier versions of the manu
script. These include Professors P. M. Anselone, D. S. Carter, R. B. Guenther, 
B. Petersen, and, particularly, R. M. Koch. Professor Norton Starr of Amherst 
College also read an earlier version of the manuscript and made suggestions. 
In addition, I wish to thank Professor D. C. Rung of The Pennsylvania State 
University for suggesting the title. Finally, I wish to praise Mr. Edward J. 
Quigley, who is a new publisher, but a good one. 
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It is fitting to end this preface with advice to the reader from the creator 
and patron saint of calculus. The following statement came in answer to the 
question of how he had made his famous discoveries: 

Isaac Newton 

"By always thinking about them, I keep the subject constantly before me and 
wait till the first dawnings open little by little into the full light." 

PREFACE TO THE 
SPRINGER EDITION 

K. T. s. 

Rademacher's theorem on the differentiability of Lipschitz functions has been 
added. Applications of Rademacher's theorem and the Brouwer degree to 
changes of variable in multiple integrals have been added. The main addition, 
however, is a chapter on the results of Hestenes, Seeley, and Adams-Aronszajn
Smith on extension of differentiable functions of various kinds across Lipschitz 
graphs. A construction is given for a single extension operator which applies 
to functions of class em, functions of class em with bounded derivatives, functions 
of class em with Holder continuous derivatives, and to Sobolev functions. It 
applies to many other function classes as well, but these are the ones discussed 
explicitly. The discussion of the Sobolev spaces requires a minimal knowledge 
of If' spaces (mainly the Holder and Minkowski inequalities). The theorems 
cover polyhedral domains, so they are of use in the numerical study of partial 
differential equations, as well as of theoretical interest. 

K.T.S. 
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