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Series Preface 

Mathematics is playing an ever more important role in the physical and 
biological sciences, provoking a blurring of boundaries between scientific 
disciplines and a resurgence of interest in the modern as well as the classical 
techniques of applied mathematics. This renewal of interest, both in research 
and teaching, has led to the establishment of the series: Texts in Applied 
Mathematics (TAM). 

The development of new courses is a natural consequence of a high Ievel of 
excitement on the research frontier as newer techniques, such as numerical 
and symbolic computer systems, dynamical systems, and chaos, mix with and 
reinforce the traditional methods of applied mathematics. Thus, the purpose 
of this textbook series is to meet the current and future needs of these 
advances and encourage the teaching of new courses. 

TAM will publish textbooks suitable for use in advanced undergraduate 
and beginning graduate courses, and will complement the Applied 
Matlaematics Seiences (AMS) series which will focus on advanced textbooks 
and research Ievel monographs. 



Preface 

The material in this book is based on notes for a course which I gave 
several times at Brown University. The target of the course was juniors and 
seniors majoring in applied mathematics, engineering and other sciences. In 
actual fact, the students ranged from occasional highly prepared freshmen 
to graduate students. The last category usually made up one third to one 
half of the dass. Overall, I would say that the students found the contents 
of the book challenging and exacting. 

My basic goal in the course was to teach standard methods, or what I 
regard as a basic bag of tricks. In my opinion the material contained here, 
for the most part, does not depart widely from traditional subject matter. 
One such departure is the discussion of discrete linear systems ( and this is 
really just a return to classical material). Besides being interesting in its 
own right, this topic is included because the treatment of such systems Ieads 
naturally to the use of discrete Fourier series, discrete Fourier transforms, 
and their extension, the Z-transform. On making the transition to con
tinuous systems we derive their continuous analogues, viz., Fourier series, 
Fourier transforms, Fourier integrals and Laplace transforms. A main ad
vantage to the approach taken is that a wide variety of techniques are secn 
to result from one or two very simple but central ideas. Students appeared 
both to grasp and to appreciate this consolidation of concepts. 

Related to this and a recurrent theme in this text is the idea of trans
forming a problern to another simpler problem. This in turn Ieads to the 
use of eigenfunction methods. Virtually every method developed here is 
also derived by an eigenfunction approach. Moreover, some weight is laid 
on this being a natural way to view and analyze problems. This then Ieads 
to the geometrical point of view and to the introduction of abstract spaces. 
Since I felt that this was a very desirable approach I went to some lengths 
to motivate these ideas and make learning them as painless as possible. 

As the remarks thus far imply I have placed emphasis on presenting a 
variety of approaches and perspectives-as many as I deemed possible. This 
is in keeping with a gencral principle which I subscribe to, namely that a 
dceper understanding of a subject is gained by viewing it from as many 
aspects as possible. 

There are two basic prerequisites for this course: linear algebra and or
dinary differential equations. The latter on the Ievel of, for example, the 
books by Braun and by Boyce and DiPrima. (A Iist of references appears 
at the end of the book.) It is also appropriate to mention a word about the 



viii Preface 

first three chapters which cover basic topics in complex variable theory. If 
one views this as a course in applied complex analysis then the first three 
chapters are the underpinnings. This portion of the course was taught in 
roughly five weeks and since a broad range of topics are included some sac
rifices were required. Consequently there was no intention of having this 
course replace the traditional complex variable course. lf anything I con
tend that the standard material in complex variable theory will be better 
appreciated by the student after a course of this type. 

Above all, this course is intended as being one which gives the student a 
can-do frame of mind about mathematics. Too many math courses give the 
impression that mathematics is a minefield and that unless one is very very 
careful disasters will befall them. My view and the one that I have tried 
to present in this book is diametrically opposed to this. Students should 
be given confidence in using mathematics and not be made fearful of it. 
Partly with this in mind I have forgone the theorem-proof format for a 
more informal style. Although I have endeavored to make the mathematics 
respectable, rigor has not been given a high priority. Finally a concerted 
effort was made to present an assortment of examples from diverse applica
tions with the hope of attracting the interest of the student, and an equally 
dedicated effort was made to be kind to the reader. 

Only the help of many people made the completion of this book possi
ble. Madeline Brewster and Andria Durk prepared an earlier version and 
played an essential role in assembling the present version; Kate MacDougall 
painstakingly and patiently prepared this final version. My colleague and 
friend Jack Pipkin performed the experiment ofteaching this material from 
an earlier version of the manuscript. His criticism (sometimes severe) of
ten took root. I take pleasure in expressing sincere gratitude to them all. 
Finally no words can express my deep appreciation to Candace Kent who 
took the course, corrected my errors, mathematical and otherwise. Her 
many improvements appear throughout the text. The blemishes, flaws and 
errors that remain are due to me and are there in spite of the best efforts 
of all these people. Finally thanks, with mixed feelings, also go to the late 
Walter Kaufmann-Bühler for sweet-talking me into writing this book. 

I dedicate this book to the memory of my mother, Libby, who was my 
first and best teacher. 

L. S. 
Saltaire 

July, 1988 
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