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Preface 

At the present time, the average undergraduate mathematics major finds 
mathematics heavily compartmentalized. After the calculus, he takes a course 
in analysis and a course in algebra. Depending upon his interests (or those of 
his department), he takes courses in special topics. Ifhe is exposed to topology, 
it is usually straightforward point set topology; if he is exposed to geom
etry, it is usually classical differential geometry. The exciting revelations that 
there is some unity in mathematics, that fields overlap, that techniques of one 
field have applications in another, are denied the undergraduate. He must 
wait until he is well into graduate work to see interconnections, presumably 
because earlier he doesn't know enough. 

These notes are an attempt to break up this compartmentalization, at least 
in topology-geometry. What the student has learned in algebra and advanced 
calculus are used to prove some fairly deep results relating geometry, topol
ogy, and group theory. (De Rham's theorem, the Gauss-Bonnet theorem for 
surfaces, the functorial relation of fundamental group to covering space, and 
surfaces of constant curvature as homogeneous spaces are the most note
worthy examples.) 

In the first two chapters the bare essentials of elementary point set topology 
are set forth with some hint ofthe subject's application to functional analysis. 
Chapters 3 and 4 treat fundamental groups, covering spaces, and simplicial 
complexes. For this approach the authors are indebted to E. Spanier. After 
some preliminaries in Chapter 5 concerning the theory of manifolds, the De 
Rham theorem (Chapter 6) is proven as in H. Whitney's Geometric Integration 
Theory. In the two final chapters on Riemannian geometry, the authors 
follow E. Cartan and S. S. Chern. (In order to avoid Lie group theory in the 
last two chapters, only oriented 2-dimensional manifolds are treated.) 
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Preface 

These notes have been used at M.LT. for a one-year course in topology and 
geometry, with prerequisites of at least one semester of modern algebra and 
one semester of advanced calculus" done right." The class consisted of about 
seventy students, mostly seniors. The ideas for such a course originated in one 
of the author's tour of duty for the Committee on the Undergraduate Pro
gram in Mathematics of the Mathematical Association of America. A 
program along these lines, but more ambitious, can be found in the CUPM 
pamphlet "Pregraduate Preparation of Research Mathematicians" (1963). 
(See Outline IlIon surface theory, pp. 68-70.) The authors believe, however, 
that in lecturing to a large class without a textbook, the material in these notes 
was about as much as could be covered in a year. 
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