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PREFACE 

The existing monographs on approximation theory and on 
the constructive theory of functions (e.g. N. I. Ahiezer [1], 
J. R. Rice [192], A. F. Tim'Ln [250], I. P. Natanson [158] 
etc.), treat the problems of best approximation in classical style, 
with the methods and language of the theory of junctions, the 
use of functional analysis being reduced to a few elementary results 
on best approximation in normed linear spaces and in Hilbe1't 
spaces. In contrast to these, the present monograph attempts to 
give a modern theory of best approximation, using in a con­
sequent manner the methods of functional analysis. 

From the vast field of best approximation, this monograph 
presents in more detail the results on best approximation in normed 
lineat· spaces by elements of linear subspaces, which today 
constitute a unified theory. The more general problems of best 
approximation are exposed, briefly, in Appendices I and II. A 
glance at the table of contents shows that together with results in 
general norrned linear spaces there are given many applications 
of them in various concrete spaces. 

In order to limit the size of the present monograph, we 
deliberately have omitted some problems related to those treated 
herein (e.g. applications to extremal problems o.fthe theory of analytic 
functions, methods of computation of elements of best approxima­
tion, the problem of moments, connections with linear programming, 
etc.). Also, some results related to those presented here are mentioned 
without proof. 

Being the first of this kind in the literature, the present mono­
graph is based exclusively on papers published in mathematical 
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journals ; the references to these are given in the text after each 
result. The bibliography given at the end does not aim at being 
complete, it includes only papers which are effectively quoted in 
the text. 

The present monograph is intended for a large circle of mathe­
maticians. Firstly, it is addressed to specialists in approximation 
theory and the constructive theory of functions, offering to them 
the methods of functional analysis for the study of these classical 
domains of mathematics; the necessity and advantages of these 
methods are shown in the "Introduction". Secondly, it is addressed 
to those working in functional analysis, offering them an important 
.field of applications. Also, taking into account that in the 
problems investigated there are combined the methods of func­
tional analysis, geometry, general topology, measure theory and 
other mathematical disciplines, we hope that the present mono­
graph will be useful to other categories of readers as well (e.g. 
to specialists in the geometry of convex bodies, etc.). 

The reader is assumed to know the elements of functional 
analysis and the mathematical disciplines mentioned above, e.g. 
within the limits of university courses. However, in order to faci­
litate the reading and to make the book accessible to University 
students as well, we have indicated, in connection with the results 
used (of functional analysis, theory of measure, etc.), a reference 
to a treatise containing the proof of the respective result ; when 
we have used results which are not to be found in monographs 
but only in papers published in joumals, we have mentioned them 
in the form of lemmas, giving also their proof. 

In conclusion, I wish to express my thanks to Miron 
N icolescu, member of the Academy, for the invitation to write this 
monograph and for the constant interest shown during its elabo­
ration. Also, I extend my thanks to my colleagues N. Dinculeanu 
and C. Foia~ for valuable discussions on the proofs of certain 
theorems and to V. Klee of the University of Washington in Seattle 
for some bibliographical indications. 

Bucharest, July I, 1966 

THE AUTHOR 
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This 'is a translation of the original Romanian monograph, 
with a number of corrections of misprints and errors. I wish to 
express my thanks to those friends and colleagtles, G. Godini 
(Bucharest), J. Blatter and G. Pantelidis (Bonn), A. Garkav'i 
(Moscow), JJI. 1. Kadec (Harkov), G. Alexits (Budapest) and 
others, who hat·e called my attention to sorne of these corrections. 
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