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PREFACE

The existing monographs on approximation theory and on
the constructive theory of functions (e.g. N. I. Ahiezer [1],
J. R. Rice [192], A. F. Timan [250], I. P. Natanson [158]
etc.), treat the problems of best approximation in classical style,
with the methods and language of the theory of fumctions, the
use of functional analysis being reduced to a few elementary results
on best approximation in normed linear spaces and in Hilbert
spaces. In contrast to these,the present monograph attempts to
give a modern theory of best approximation, using in a con-
sequent manner the methods of funectional analysis.

From the vast field of best approximation, this monograph
presents in more detail the results on best approximation in normed
linear spaces by elements of linear subspaces, which today
constitute a unified theory. The more gencral problems of best
approximation are exposed, briefly, in Appendices I and I1. A
glance at the table of contents shows that together with results in
general normed linear spaces there are given many applications
of them in various concrete spaces.

In order to limit the size of the present monograph, we
deliberately have omitted some problems related to those treated
herein (e.g. applications to extremal problems of the theory of analytic
functions, methods of computation of elements of best approxima-
tion, the problem of moments, connections with linear programming,
ete.). Also, some results related to those presented here are mentioned
without proof.

Being the first of this kind in the literature, the present mono-
graph is based exclusively on papers published in mathematical
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journals ; the references to these are given in the text after each
result. The bibliography given at the end does not aim at being
complete, it includes only papers which are effectively quoted in
the teat.

The present monograph is intended for a large circle of mathe-
maticians. Firstly, it is addressed to specialists in approvimation
theory and the constructive theory of functions, offering to them
the methods of functional analysis for the study of these classical
domains of mathematics; the necessity and advantages of these
methods are shown in the **Introduction”. Secondly, it is addressed
to those working in functional analysis, offering them an important
field of applications. Also, taking tinto account that in the
problems investigated there are combined the methods of func-
tional analysis, geometry, general topology, measure theory and
other mathematical disciplines, we hope that the present mono-
graph will be useful to other categories of readers as well (e.g.
to specialists in the geometry of convex bodies, etc.).

The reader is assumed to know the elements of functional
analysis and the mathematical disciplines mentioned above, e.g.
within the limits of university courses. However, in order to faci-
litate the reading and to make the book accessible to University
students as well, we have indicated, in connection with the results
used (of functional analysis, theory of measure, elc.), a reference
to a treatise containing the proof of the respective result; when
we have used results which are not to be found in monographs
but only in papers published in journals, we have mentioned them
in the form of lemmas, giving also their proof.

In conclusion, I wish to express my thanks to Miron
Nicolescu, member of the Academy, for the invitation to write this
monograph and for the constant interest shown during its elabo-
ration. Also, I extend my thanks to my colleagues N. Dinculeanu
and- C. Foias for valuable discussions on the proofs of certain
theorems and to V. Klee of the University of Washington in Seattle
for some bibliographical indications.

Bucharest, July 1, 1966

THE AUTHOR



PREFACE TO THE ENGLISH EDITION

This is a translation of the original Romanian monograph,
with a number of corrections of misprints and errors. I wish to
express my thanks to those friends and colleagues, G. Godini
(Bucharest), J. Blatter and G. Pantelidis (Bonn), A. Garkavi
(Moscow), M. I. Kadec (Harkov), G. Alexits (Budapest) and
others, who have called my attention to some of these corrections.

State College, Pennsylvaniu

IvaAN SINGER
November 29, 1968



