# Graduate Texts in Mathematics 67

*Editorial Board* S. Axler F.W. Gehring K.A. Ribet

Springer Science+Business Media, LLC

# **Graduate Texts in Mathematics**

- 1 TAKEUTI/ZARING. Introduction to Axiomatic Set Theory. 2nd ed.
- 2 OXTOBY. Measure and Category. 2nd ed.
- 3 SCHAEFER. Topological Vector Spaces. 2nd ed.
- 4 HILTON/STAMMBACH. A Course in Homological Algebra. 2nd ed.
- 5 MAC LANE. Categories for the Working Mathematician. 2nd ed.
- 6 HUGHES/PIPER. Projective Planes.
- 7 SERRE. A Course in Arithmetic.
- 8 TAKEUTI/ZARING. Axiomatic Set Theory.
- 9 HUMPHREYS. Introduction to Lie Algebras and Representation Theory.
- 10 COHEN. A Course in Simple Homotopy Theory.
- 11 CONWAY. Functions of One Complex Variable I. 2nd ed.
- 12 BEALS. Advanced Mathematical Analysis.
- 13 ANDERSON/FULLER. Rings and Categories of Modules. 2nd ed.
- 14 GOLUBITSKY/GUILLEMIN. Stable Mappings and Their Singularities.
- 15 BERBERIAN. Lectures in Functional Analysis and Operator Theory.
- 16 WINTER. The Structure of Fields.
- 17 ROSENBLATT. Random Processes. 2nd ed.
- 18 HALMOS. Measure Theory.
- 19 HALMOS. A Hilbert Space Problem Book. 2nd ed.
- 20 HUSEMOLLER. Fibre Bundles. 3rd ed.
- 21 HUMPHREYS. Linear Algebraic Groups.
- 22 BARNES/MACK. An Algebraic Introduction to Mathematical Logic.
- 23 GREUB. Linear Algebra. 4th ed.
- 24 HOLMES. Geometric Functional Analysis and Its Applications.
- 25 HEWITT/STROMBERG. Real and Abstract Analysis.
- 26 MANES. Algebraic Theories.
- 27 KELLEY. General Topology.
- 28 ZARISKI/SAMUEL. Commutative Algebra. Vol.I.
- 29 ZARISKI/SAMUEL. Commutative Algebra. Vol.II.
- 30 JACOBSON. Lectures in Abstract Algebra I. Basic Concepts.
- 31 JACOBSON. Lectures in Abstract Algebra II. Linear Algebra.
- 32 JACOBSON. Lectures in Abstract Algebra III. Theory of Fields and Galois Theory.

- 33 HIRSCH. Differential Topology.
- 34 SPITZER. Principles of Random Walk. 2nd ed.
- 35 ALEXANDER/WERMER. Several Complex Variables and Banach Algebras. 3rd ed.
- 36 KELLEY/NAMIOKA et al. Linear Topological Spaces.
- 37 MONK. Mathematical Logic.
- 38 GRAUERT/FRITZSCHE. Several Complex Variables.
- 39 ARVESON. An Invitation to C\*-Algebras.
- 40 KEMENY/SNELL/KNAPP. Denumerable Markov Chains. 2nd ed.
- 41 APOSTOL. Modular Functions and Dirichlet Series in Number Theory. 2nd ed.
- 42 SERRE. Linear Representations of Finite Groups.
- 43 GILLMAN/JERISON. Rings of Continuous Functions.
- 44 KENDIG. Elementary Algebraic Geometry.
- 45 LOÈVE. Probability Theory I. 4th ed.
- 46 LOÈVE. Probability Theory II. 4th ed.47 MOISE. Geometric Topology in
- Dimensions 2 and 3.
- 48 SACHS/WU. General Relativity for Mathematicians.
- 49 GRUENBERG/WEIR. Linear Geometry. 2nd ed.
- 50 EDWARDS. Fermat's Last Theorem.
- 51 KLINGENBERG. A Course in Differential Geometry.
- 52 HARTSHORNE. Algebraic Geometry.
- 53 MANIN. A Course in Mathematical Logic.
- 54 GRAVER/WATKINS. Combinatorics with Emphasis on the Theory of Graphs.
- 55 BROWN/PEARCY. Introduction to Operator Theory I: Elements of Functional Analysis.
- 56 MASSEY. Algebraic Topology: An Introduction.
- 57 CROWELL/FOX. Introduction to Knot Theory.
- 58 KOBLITZ. *p*-adic Numbers, *p*-adic Analysis, and Zeta-Functions. 2nd ed.
- 59 LANG. Cyclotomic Fields.
- 60 ARNOLD. Mathematical Methods in Classical Mechanics. 2nd ed.
- 61 WHITEHEAD. Elements of Homotopy

(continued after index)

Jean-Pierre Serre

# Local Fields

Translated from the French by Marvin Jay Greenberg



Jean-Pierre Serre Collège de France 3 rue d'Ulm 75005 Paris, France Marvin Jay Greenberg University of California at Santa Cruz Mathematics Department Santa Cruz, CA 95064

Editorial Board S. Axler Mathematics Department San Francisco State University

San Francisco, CA 94132

F.W. Gehring Mathematics Department East Hall University of Michigan Ann Arbor, MI 48109 USA K.A. Ribet Mathematics Department University of California at Berkeley Berkeley, CA 94720-3840 USA

#### Mathematics Subject Classifications (1991): 11R37, 11R34, 12G05, 20J06

With 1 Figure

USA

#### Library of Congress Cataloging-in-Publication Data

Serre, Jean-Pierre. Local fields.

(Graduate texts in mathematics; 67) Translation of Corps Locaux.
Bibliography: p. Includes index.
1. Class field theory.
2. Homology theory.
I. Title. II. Series.
QA247.S4613 512'.74 79-12643

L'edition originale a été publieé en France sous le titre *Corps locaux* par HERMANN, éditeurs des sciences et des arts, Paris.

All rights reserved.

No part of this book may be translated or reproduced in any form without written permission from Springer Science+Business Media, LLC.

© 1979 by Springer Science+Business Media New York Originally published by Springer-Verlag New York Berlin Heidelberg in 1979 Softcover reprint of the hardcover 1st edition 1979

9876543

ISBN 978-1-4757-5675-3 ISBN 978-1-4757-5673-9 (eBook) DOI 10.1007/978-1-4757-5673-9 SPIN 10761519

# Contents

| Introduction<br>Leitfaden | 12 |
|---------------------------|----|
|                           |    |

## Part One LOCAL FIELDS (BASIC FACTS)

| Chapter | I |
|---------|---|
| Chapter | • |

| Discrete Valuation Rings and Dedekind Domains                        |    |
|----------------------------------------------------------------------|----|
| <ol> <li>§1. Definition of Discrete Valuation Ring</li> </ol>        | 5  |
| §2. Characterisations of Discrete Valuation Rings                    | 7  |
| §3. Dedekind Domains                                                 | 9  |
| §4. Extensions                                                       | 13 |
| §5. The Norm and Inclusion Homomorphisms                             | 15 |
| §6. Example: Simple Extensions                                       | 17 |
| §7. Galois Extensions                                                | 20 |
| §8. Frobenius Substitution                                           | 23 |
| Chapter II                                                           |    |
| Completion                                                           | 26 |
| §1. Absolute Values and the Topology Defined by a Discrete Valuation | 26 |
| §2. Extensions of a Complete Field                                   | 28 |
| §3. Extension and Completion                                         | 30 |
| §4. Structure of Complete Discrete Valuation Rings I:                |    |
| Equal Characteristic Case                                            | 32 |
| §5. Structure of Complete Discrete Valuation Rings II:               |    |
| Unequal Characteristic Case                                          | 36 |
| §6. Witt Vectors                                                     | 40 |

### Part Two RAMIFICATION

| Chapter III                                                                                                                                                                                                                                                                                                                                                                                           |                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Discriminant and Different                                                                                                                                                                                                                                                                                                                                                                            | 47                                     |
| <ul> <li>§1. Lattices</li> <li>§2. Discriminant of a Lattice with Respect to a Bilinear Form</li> <li>§3. Discriminant and Different of a Separable Extension</li> <li>§4. Elementary Properties of the Different and Discriminant</li> <li>§5. Unramified Extensions</li> <li>§6. Computation of Different and Discriminant</li> <li>§7. A Differential Characterisation of the Different</li> </ul> | 47<br>48<br>50<br>51<br>53<br>55<br>59 |
| Chapter IV                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| Ramification Groups                                                                                                                                                                                                                                                                                                                                                                                   | 61                                     |
| §1. Definition of the Ramification Groups; First Properties<br>§2. The Quotients $G_i/G_{i+1}$ , $i \ge 0$<br>§3. The Functions $\phi$ and $\psi$ ; Herbrand's Theorem<br>§4. Example: Cyclotomic Extensions of the Field $\mathbf{Q}_p$                                                                                                                                                              | 61<br>65<br>73<br>77                   |
| Chapter V                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
| The Norm                                                                                                                                                                                                                                                                                                                                                                                              | 80                                     |
| <ul> <li>§1. Lemmas</li> <li>§2. The Unramified Case</li> <li>§3. The Cyclic of Prime Order Totally Ramified Case</li> <li>§4. Extension of the Residue Field in a Totally Ramified Extension</li> <li>§5. Multiplicative Polynomials and Additive Polynomials</li> <li>§6. The Galois Totally Ramified Case</li> <li>§7. Application: Proof of the Hasse-Arf Theorem</li> </ul>                      | 80<br>81<br>83<br>87<br>90<br>91<br>93 |
| Chapter VI                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| Artin Representation                                                                                                                                                                                                                                                                                                                                                                                  | 97                                     |
| <ul><li>§1. Representations and Characters</li><li>§2. Artin Representation</li></ul>                                                                                                                                                                                                                                                                                                                 | 97<br>99                               |

83. Globalisation

| §3. | Globalisation                                            | 103 |
|-----|----------------------------------------------------------|-----|
| §4. | Artin Representation and Homology (for Algebraic Curves) | 105 |

Part Three **GROUP COHOMOLOGY** 

| Chapter VII                               | 109 |
|-------------------------------------------|-----|
| Basic Facts                               |     |
| §1. G-Modules                             | 109 |
| §2. Cohomology                            | 111 |
| §3. Computing the Cohomology via Cochains | 112 |

| Contents                                                                                                                            | vii                      |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| <ul> <li>§4. Homology</li> <li>§5. Change of Group</li> <li>§6. An Exact Sequence</li> <li>§7. Subgroups of Finite Index</li> </ul> | 114<br>115<br>117<br>118 |
| §8. Transfer                                                                                                                        | 120                      |
| Appendix                                                                                                                            |                          |
| Non-abelian Cohomology                                                                                                              | 123                      |
| Chapter VIII                                                                                                                        |                          |
| Cohomology of Finite Groups                                                                                                         | 127                      |
| §1. The Tate Cohomology Groups                                                                                                      | 127                      |
| §2. Restriction and Corestriction                                                                                                   | 129                      |
| <ul> <li>§3. Cup Products</li> <li>84. Cohomology of Finite Cyclic Groups, Herbrand Quotient</li> </ul>                             | 131                      |
| <ul><li>§5. Herbrand Quotient in the Cyclic of Prime Order Case</li></ul>                                                           | 132                      |
| Chapter IX                                                                                                                          |                          |
| Theorems of Tate and Nakayama                                                                                                       | 138                      |
| §1. p-Groups                                                                                                                        | 138                      |
| §2. Sylow Subgroups                                                                                                                 | 139                      |
| §3. Induced Modules; Cohomologically Irivial Modules                                                                                | 141                      |
| <ol> <li>St. Cohomology of a Finite Group</li> </ol>                                                                                | 142                      |
| §6. Dual Results                                                                                                                    | 146                      |
| §7. Comparison Theorem                                                                                                              | 147                      |
| §8. The Theorem of Tate and Nakayama                                                                                                | 148                      |
| Chapter X                                                                                                                           | 1.50                     |
| Galois Cohomology                                                                                                                   | 150                      |
| §1. First Examples                                                                                                                  | 150                      |
| <ul> <li>§2. Several Examples of "Descent"</li> <li>§3. Infinite Galois Extensions</li> </ul>                                       | 152                      |
| 84. The Brauer Group                                                                                                                | 155                      |
| §5. Comparison with the Classical Definition of the Brauer Group                                                                    | 157                      |
| §6. Geometric Interpretation of the Brauer Group: Severi-Brauer Varieties                                                           | 160                      |
| §7. Examples of Brauer Groups                                                                                                       | 161                      |
| Chapter XI                                                                                                                          | 164                      |
| Class Formations                                                                                                                    | 164                      |
| §1. The Notion of Formation                                                                                                         | 164                      |
| 82. Class Formations<br>83. Fundamental Classes and Reciprocity Isomorphism                                                         | 168                      |
| §4. Abelian Extensions and Norm Groups                                                                                              | 171                      |
| §5. The Existence Theorem                                                                                                           | 173                      |
| Appendix                                                                                                                            |                          |

Computations of Cup Products

176

### Part Four LOCAL CLASS FIELD THEORY

Chapter XII

| Brauer Group of a Local Field                                                                                                                                                                                                                                                                                                                                                                                          |                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| <ul> <li>§1. Existence of an Unramified Splitting Field</li> <li>§2. Existence of an Unramified Splitting Field (Direct Proof)</li> <li>§3. Determination of the Brauer Group</li> </ul>                                                                                                                                                                                                                               | 181<br>182<br>184                             |
| Chapter XIII                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |
| Local Class Field Theory                                                                                                                                                                                                                                                                                                                                                                                               | 188                                           |
| <ul> <li>§1. The Group  and Its Cohomology</li> <li>§2. Quasi-Finite Fields</li> <li>§3. The Brauer Group</li> <li>§4. Class Formation</li> <li>§5. Dwork's Theorem</li> </ul>                                                                                                                                                                                                                                         | 188<br>190<br>192<br>195<br>199               |
| Chapter XIV                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |
| Local Symbols and Existence Theorem                                                                                                                                                                                                                                                                                                                                                                                    | 204                                           |
| <ul> <li>§1. General Definition of Local Symbols</li> <li>§2. The Symbol (a, b)</li> <li>§3. Computation of the Symbol (a, b)<sub>v</sub> in the Tamely Ramified Case</li> <li>§4. Computation of the Symbol (a, b)<sub>v</sub> for the Field Q<sub>p</sub> (n = 2)</li> <li>§5. The symbols [a, b)</li> <li>§6. The Existence Theorem</li> <li>§7. Example: The Maximal Abelian Extension of Q<sub>p</sub></li> </ul> | 204<br>205<br>209<br>211<br>214<br>218<br>220 |
| Appendix<br>The Clabel Case (Statement of Benults)                                                                                                                                                                                                                                                                                                                                                                     | 221                                           |
| The Global Case (Statement of Results)                                                                                                                                                                                                                                                                                                                                                                                 | 221                                           |
| Chapter XV<br>Ramification                                                                                                                                                                                                                                                                                                                                                                                             | 223                                           |
| <ul> <li>§1. Kernel and Cokernel of an Additive (resp. Multiplicative) Polynomial</li> <li>§2. The Norm Groups</li> <li>§3. Explicit Computations</li> </ul>                                                                                                                                                                                                                                                           | 223<br>226<br>229                             |
| Bibliography                                                                                                                                                                                                                                                                                                                                                                                                           | 232                                           |
| Supplementary Bibliography for the English Edition                                                                                                                                                                                                                                                                                                                                                                     | 235                                           |
| Index                                                                                                                                                                                                                                                                                                                                                                                                                  | 239                                           |

viii