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Preface 

The present book is an English translation of 

Algebre Locale - Multiplicites 

published by Springer-Verlag as no. 11 of the Lecture Notes series. 

The original text was based on a set of lectures, given at the College de 
France in 1957-1958, and written up by Pierre Gabriel. Its aim was to give 
a short account of Commutative Algebra, with emphasis on the following 
topics: 

a) Modules (as opposed to Rings, which were thought to be the only 
subject of Commutative Algebra, before the emergence of sheaf theory 
in the 1950s); 

b) H omological methods, a la Cartan-Eilenberg; 
c) Intersection multiplicities, viewed as Euler-Poincare characteristics. 

The English translation, done with great care by Chee Whye Chin, 
differs from the original in the following aspects: 
- The terminology has been brought up to date (e.g. "cohomological 

dimension" has been replaced by the now customary "depth"). 
I have rewritten a few proofs and clarified (or so I hope) a few more. 

- A section on graded algebras has been added (App. III to Chap. IV). 
- New references have been given, especially to other books on Commuta-

tive Algebra: Bourbaki (whose Chap. X has now appeared, after a 40-year 
wait) , Eisenbud, Matsumura, Roberts, .... 

I hope that these changes will make the text easier to read, without 
changing its informal "Lecture Notes" character. 

J-P. Serre, 
Princeton, Fall 1999 
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Introduction 

The intersection multiplicities of algebraie geometry are equal to some 
"Euler-Poincare characteristics" constructed by means of the Tor func
tor of Cartan-Eilenberg. The main purpose of this course is to prove this 
result, and to apply it to the fundamental formulae of intersection theory. 

It is necessary to first recall some basie results of local algebra: primary 
decomposition, Cohen-Seidenberg theorems, normalization of polynomial 
rings, Krull dimension, characteristie polynomials (in the sense of Hilbert
Samuel). 

Homology comes next, when we consider the multiplicity eq (E, r) of 
an ideal of definition q = (Xl, ... , X r ) of a local noetherian ring A with 
respect to a finitely generated A -module E. This multiplicity is defined 
as the coefficient of nr Ir! in the polynomial-like function n f---+ eA (E Iqn E) 
[here eA(F) is the length of an A-module FJ. We prove in this case the 
following formula, which plays an essential role in the sequel: 

r 

eq(E,r) = L(-l)'eA(H,(x,E)) 
,=0 

where the H,(x, E) denotes the homology modules of the Koszul complex 
constructed on E by means of x = (Xl, ... ,Xr ) . 

Moreover this complex can be used in other problems of local algebra, 
for example for the study of the depth of modules over a local ring and of 
the Cohen-Macaulay modules (those whose Krull dimension coincides with 
their depth), and also for showing that regular local rings are the only local 
rings whose homologie al dimension is finite. 

Once formula (*) is proved, one may study the Euler-Poincare charac
teristic constructed by means of Tor. When one translates the geometrie 
situation of intersections into the language of local algebra, one obtains 
a regular local ring A, of dimension n, and two finitely generated A
modules E and F over A, whose tensor product is of finite length over 
A (this means that the varieties corresponding to E and F intersect only 
at the given point). One is then led to conjecture the following statements: 
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(i) dim(E) + dim(F) :5 n ("dimension formula"). 

(ii) XA(E,F) = E~o(-l)'eA(Tor~(E,F)) is ;:::0. 

(iii) XA(E, F) 0 if and only if the inequality in (i) is strict. 

Formula (*) shows that the statements (i), (ii) and (iii) are true if 
F = A/(xl, ... ,Xr ), with dim(F) = n - r. Thanks to a process, using 
completed tensor products, which is the algebraic analogue of "reduction to 
the diagonal" , one can show that they are true when A has the same char
acteristic as its residue field, or when A is unramified. To go beyond that, 
one can use the structure theorems of complete local rings to prove (i) in 
the most general case. On the other hand, I have not succeeded in proving 
(ii) and (iii) without making assumptions about A, nor to give counter
examples. It seems that it is necessary to approach the question from a 
different angle, for example by directly defining (by a suitable asymptotic 
process) an integer ;::: 0 which one would subsequently show to be equal 
to XA(E,F). 

Fortunately, the case of equal characteristic is sufficient for the ap
plications to algebraic geometry (and also to analytic geometry). More 
specifically, let X be a non-singular variety, let V and W be two irre
ducible subvarieties of X , and suppose that C = V n W is an irreducible 
subvariety of X , with: 

dirn X + dirn C = dirn V + dirn W ("proper" intersection). 

Let A, Av , Aw be the local rings of X, V and W at C. If 

i(V· W,C;X) 

denotes the multiplicity of the intersection of V and W at C (in the 
sense of Weil, Chevalley, Samuel), we have the formula: 

i(V· W,C;X) = XA(Av,Aw). 

This formula is proved by reduction to the diagonal, and the use of 
( *) . In fact, it is convenient to take (**) as the definition of multiplicities. 
The properties of these multiplicities are then obtained in a natural way: 
commutativity follows from that for Tor; associativity follows from the two 
spectral sequences which expresses the associativity of Tor; the projection 
formula follows from the two spectral sequences connecting the direct im
ages of a coherent sheave and Tor (these latter spectral sequences have 
other interesting applications, but they are not explored in the present 
course). In each case, one uses the well-known fact that Euler-Poincare 
characteristics remain constant through a spectral sequence. 

When one defines intersection multiplicities by means of the Tor
formula above, one is led to extend the theory beyond the strictly "non
singular" framework of Weil and Chevalley. For example, if f : X ~ Y 
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is a morphism of a variety X into a non-singular variety Y, one can 
associate, to two cycles x and y of X and Y, a "product" x·/ y which 
corresponds to x n j-l(y) (of course, this product is only defined under 
certain dimension conditions). When j is the identity map, one recovers 
the standard product. The commutativity, associativity and projection 
formulae can be stated and proved for this new product. 


