Graduate Texts in Mathematics

42

Editorial Board

F. W. Gehring

P. R. Halmos Managing Editor

C. C. Moore

Jean-Pierre Serre

Linear Representations of Finite Groups

Translated from the French by Leonard L. Scott

Springer-Verlag New York Heidelberg Berlin Jean-Pierre Serre Collège de France Chaire d'algèbre et géométrie Paris, France Leonard L. Scott University of Virginia Department of Mathematics Charlottesville, Virginia 22903

Editorial Board

P. R. Halmos Managing Editor University of California Department of Mathematics Santa Barbara, California 93106 C. C. Moore University of California at Berkeley Department of Mathematics Berkeley, California 94720 F. W. Gehring University of Michigan Department of Mathematics Ann Arbor, Michigan 48104

AMS Subject Classification: Primary 20Cxx Secondary 20Dxx, 12B15, 16A50, 16A54

Library of Congress Cataloging in Publication Data

Serre, Jean-Pierre.
Linear representations of finite groups.
(Graduate texts in mathematics ; 42)
Translation of Représentations linéaires des groupes finis, 2. ed.
Includes bibliographies and indexes.
1. Representations of groups. 2. Finite groups. I. Title. II. Series.

QA171.S5313 512'.2 76-12585

Translation of the French edition Représentations linéaires des groupes finis, Paris: Hermann 1971

All rights reserved.

© 1977 by Springer-Verlag, New York Inc.

Softcover reprint of the hardcover 1st edition 1977

987654321

ISBN 978-1-4684-9460-0 ISBN 978-1-4684-9458-7 (eBook) DOI 10.1007/978-1-4684-9458-7

Preface

This book consists of three parts, rather different in level and purpose:

The first part was originally written for quantum chemists. It describes the correspondence, due to Frobenius, between linear representations and characters. This is a fundamental result, of constant use in mathematics as well as in quantum chemistry or physics. I have tried to give proofs as elementary as possible, using only the definition of a group and the rudiments of linear algebra. The examples (Chapter 5) have been chosen from those useful to chemists.

The second part is a course given in 1966 to second-year students of l'École Normale. It completes the first on the following points:

- (a) degrees of representations and integrality properties of characters (Chapter 6);
- (b) induced representations, theorems of Artin and Brauer, and applications (Chapters 7-11);
- (c) rationality questions (Chapters 12 and 13).

The methods used are those of linear algebra (in a wider sense than in the first part): group algebras, modules, noncommutative tensor products, semisimple algebras.

The third part is an introduction to Brauer theory: passage from characteristic 0 to characteristic p (and conversely). I have freely used the language of abelian categories (projective modules, Grothendieck groups), which is well suited to this sort of question. The principal results are:

- (a) The fact that the decomposition homomorphism is surjective: all irreducible representations in characteristic *p* can be lifted "virtually" (i.e., in a suitable Grothendieck group) to characteristic 0.
- (b) The Fong-Swan theorem, which allows suppression of the word "virtually" in the preceding statement, provided that the group under consideration is *p*-solvable.

I have also given several applications to the Artin representations.

I take pleasure in thanking:

Gaston Berthier and Josiane Serre, who have authorized me to reproduce Part I, written as an Appendix to their book, *Quantum Chemistry*;

Yves Balasko, who drafted a first version of Part II from some lecture notes; Alexandre Grothendieck, who has authorized me to reproduce Part III, which first appeared in his Séminaire de Géométrie Algébrique, I.H.E.S., 1965/66.

Contents

Part I Representations and Characters

1	Generalities on linear representations		3
	1.1	Definitions	3
	1.2	Basic examples	4
	1.3	Subrepresentations	5
	1.4	Irreducible representations	7
	1.5	Tensor product of two representations	7
	1.6	Symmetric square and alternating square	9
2	Character theory		10
	2.1	The character of a representation	10
	2.2	Schur's lemma; basic applications	13
	2.3	Orthogonality relations for characters	15
	2.4	Decomposition of the regular representation	17
	2.5	Number of irreducible representations	18
	2.6	Canonical decomposition of a representation	21
	2.7	Explicit decomposition of a representation	23
3	Subgroups, products, induced representations		25
-	3.1	Abelian subgroups	25
	3.2	Product of two groups	26
	3.3	Induced representations	28
4	Compact groups		32
	4.1	Compact groups	32
	4.2	Invariant measure on a compact group	32
	4.3	Linear representations of compact groups	33

1

Contents

5	Examples	35
	5.1 The cyclic Group C_n	35
	5.2 The group C_{∞}	36
	5.3 The dihedral group D_n	36
	5.4 The group D_{nh}	38
	5.5 The group D_{∞}	39
	5.6 The group $D_{\infty h}$	40
	5.7 The alternating group \mathfrak{A}_4	41
	5.8 The symmetric group \mathfrak{S}_4	42
	5.9 The group of the cube	43
Bib	liography: Part I	44

Pa	rt II	
Rej	presentations in Characteristic Zero	45
6	The group algebra	47
	6.1 Representations and modules	47
	6.2 Decomposition of C[G]	48
	6.3 The center of C[G]	50
	6.4 Basic properties of integers	50
	6.5 Integrality properties of characters. Applications	52
7	Induced representations; Mackey's criterion	54
	7.1 Induction	54
	7.2 The character of an induced representation; the reciprocity formula	55
	7.3 Restriction to subgroups	58
	7.4 Mackey's irreducibility criterion	59
8	Examples of induced representations	61
	8.1 Normal subgroups; applications to the degrees of the irreducible representations	61
	8.2 Semidirect products by an abelian group	62
	8.3 A review of some classes of finite groups	63
	8.4 Sylow's theorem	65
	8.5 Linear representations of supersolvable groups	66
9	Artin's theorem	68
	9.1 The ring $R(G)$	68
	9.2 Statement of Artin's theorem	70
	9.3 First proof	70
	9.4 Second proof of (i) \Rightarrow (ii)	72
10	A theorem of Brauer	74
	10.1 <i>p</i> -regular elements; <i>p</i> -elementary subgroups	74
	10.2 Induced characters arising from <i>p</i> -elementary subgroups	75
	10.3 Construction of characters	76
	10.4 Proof of theorems 18 and 18'	78
	10.5 Brauer's theorem	78

11	Applications of Brauer's theorem	81
	11.1 Characterization of characters	81
	11.2 A theorem of Frobenius	83
	11.3 A converse to Brauer's theorem	85
	11.4 The spectrum of $A \otimes R(G)$	86
12	Rationality questions	90
	12.1 The rings $R_K(G)$ and $R_K(G)$	90
	12.2 Schur indices	92
	12.3 Realizability over cyclotomic fields	94
	12.4 The rank of $R_{K}(G)$	95
	12.5 Generalization of Artin's theorem	96
	12.6 Generalization of Brauer's theorem	97
	12.7 Proof of theorem 28	99
13	Rationality questions: examples	102
	13.1 The field Q	102
	13.2 The field R	106
Bibl	liography: Part II	111

Part III Introduction to Brauer Theory

113

14	The groups $R_{k}(G)$, $R_{k}(G)$, and $P_{k}(G)$	115
	14.1 The rings $R_{K}(G)$ and $R_{k}(G)$	115
	14.2 The groups $P_k(G)$ and $P_A(G)$	116
	14.3 Structure of $P_k(G)$	116
	14.4 Structure of $P_A(G)$	118
	14.5 Dualities	120
	14.6 Scalar extensions	122
15	The <i>cde</i> triangle	124
	15.1 Definition of $c: P_k(G) \to R_k(G)$	124
	15.2 Definition of d: $R_{K}(G) \rightarrow R_{k}(G)$	125
	15.3 Definition of $e: P_k(G) \rightarrow R_k(G)$	127
	15.4 Basic properties of the <i>cde</i> triangle	127
	15.5 Example: p'-groups	128
	15.6 Example: p-groups	129
	15.7 Example: products of p' -groups and p -groups	129
16	Theorems	131
	16.1 Properties of the <i>cde</i> triangle	131
	16.2 Characterization of the image of e	133
	16.3 Characterization of projective A [G]-modules by their characters	134
	16.4 Examples of projective A [G]-modules: irreducible representations of defect zero	136

Contents

17	Proofs	138
	17.1 Change of groups	138
	17.2 Brauer's theorem in the modular case	139
	17.3 Proof of theorem 33	140
	17.4 Proof of theorem 35	142
	17.5 Proof of theorem 37	143
	17.6 Proof of theorem 38	144
18	Modular characters	147
	18.1 The modular character of a representation	147
	18.2 Independence of modular characters	149
	18.3 Reformulations	151
	18.4 A section for d	152
	18.5 Example: Modular characters of the symmetric group \mathfrak{S}_4	153
	18.6 Example: Modular characters of the alternating group \mathfrak{A}_5	156
19	Application to Artin representations	159
	19.1 Artin and Swan representations	159
	19.2 Rationality of the Artin and Swan representations	161
	19.3 An invariant	162
Appendix		163
Bibliography: Part III		165
Inc	lex of notation	167
Inc	lex of terminology	169