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Preface 

This book consists of three parts, rather different in level and purpose: 

The first part was originally written for quantum chemists. It describes the 
correspondence, due to Frobenius, between linear representations and charac
ters. This is a fundamental result, of constant use in mathematics as well as in 
quantum chemistry or physics. I have tried to give proofs as elementary as 
possible, using only the definition of a group and the rudiments of linear algebra. 
The examples (Chapter 5) have been chosen from those useful to chemists. 

The second part is a course given in 1966 to second-year students of I'Ecoie 
Normale. It completes the first on the following points: 
(a) degrees of representations and integrality properties of characters (Chapter 6); 
(b) induced representations, theorems of Artin and Brauer, and applications 

(Chapters 7-11); 
(c) rationality questions (Chapters 12 and 13). 
The methods used are those of linear algebra (in a wider sense than in the first 
part): group algebras, modules, noncommutative tensor products, semisimple 
algebras. 

The third part is an introduction to Brauer theory: passage from characteristic 0 
to characteristic p (and conversely). I have freely used the language of abelian 
categories (projective modules, Grothendieck groups), which is well suited to 
this sort of question. The principal results are: 
(a) The fact that the decomposition homomorphism is surjective: all irreducible 

representations in characteristic p can be lifted "virtually" (i.e., in a suitable 
Grothendieck group) to characteristic O. 

(b) The Fong-Swan theorem, which allows suppression of the word "virtually" 
in the preceding statement, provided that the group under consideration is 
p-solvable. 
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Preface 

I have also given several applications to the Artin representations. 

I take pleasure in thanking: 

Gaston Berthier and Josiane Serre, who have authorized me to reproduce Part I, 
written as an Appendix to their book, Quantum Chemistry; 

Yves Balasko, who drafted a first version of Part n from some lecture notes; 
Alexandre Grothendieck, who has authorized me to reproduce Part III, which 

first appeared in his de I.H.E.S., 1965/66. 
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