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Series Preface 

Mathematics is playing an ever more important role in the physical and 
biological sciences, provoking a blurring of boundaries between scientific 
disciplines and a resurgence of interest in the modern as well as the clas­
sical techniques of applied mathematics. This renewal of interest, both in 
research and teaching, has led to the establishment of the series: Texts in 
Applied Mathematics (TAM). 

The development of new courses is a natural consequence of a high 
level of excitement on the research frontier as newer techniques, such as 
numerical and symbolic computer systems, dynamical systems, and chaos, 
mix with and reinforce the traditional methods of applied mathematics. 
Thus, the purpose of this textbook series is to meet the current and future 
needs of these advances and encourage the teaching of new courses. 

TAM will publish textbooks suitable for use in advanced undergraduate 
and beginning graduate courses, and will complement the Applied Mathe­
matical Sciences (AMS) series, which will focus on advanced textbooks and 
research level monographs. 



Preface 

A wide range of problems exists in classical and quantum physics, engi­
neering, and applied mathematics in which special functions arise. The 
procedure followed in most texts on these topics (e.g., quantum mechanics, 
electrodynamics, modern physics, classical mechanics, etc.) is to formu­
late the problem as a differential equation that is related to one of several 
special differential equations (Hermite's, Bessel's, Laguerre's, Legendre's, 
etc.). The corresponding special functions are then introduced as solutions 
with some discussion of recursion formulas, orthogonality relations, asymp­
totic expressions, and other properties as appropriate. In every instance, 
the reader is referred to a standard text on applied mathematical methods 
for more detail. This is all very reasonable and proper. 

Each special function can be defined in a variety of ways and different 
authors choose different definitions (Rodrigues formulas, generating func­
tions, contour integrals, etc.). Whatever the starting definition, it is usu­
ally shown to be expressible as a series, because this is frequently the most 
practical way to obtain numerical values for the functions. Also it is often 
shown---or at least stated-that the special function can be expressed in 
terms of some generalized hypergeometric function. 

In this book, we follow a different track. Each special function arises 
in one or more physical contexts as a solution of a differential equation 
that can be transformed into the hypergeometric equation (or its conflu­
ent form). The special function is then defined in terms of a generalized 
hypergeometric function. From this definition, many of the interesting and 
important properties encountered in standard upper level textbooks (recur­
sion formulas, the generating function, orthogonality relations, Rodrigues 
formula, asymptotic expressions, and various series and integral representa­
tions) are derived and the equivalence of this definition to other definitions 
is established. 

This approach is interesting, and it is instructive to see that most of the 
special functions encountered in applied mathematics have a common root 
in their relation to the hypergeometric function. The reader may notice 
that derivations are not always carried out in the simplest or the most 
straightforward manner. This is usually intentional-a consequence of a 
deliberate choice made in favor of furnishing the clearest and most direct 
connections between the functions of applied mathematics and the hyper­
geometric function rather than of finding the most elegant path to a given 
result. 



viii Preface 

In most cases, I have not introduced a mathematical topic until it is 
necessary for the discussion. For example, complex analysis is not really 
needed until we begin to look at alternate forms and integral representa­
tions of the special functions in Chapter 9. So I have deferred this subject 
until Chapters 7 and 8 with a few appropriate reminders along the way 
that it is coming. 

Also concerning the mathematics, I have reviewed some of the fundamen­
tal notions from calculus (function, continuity, convergence, etc.), which a 
student may not remember very clearly, but I have tried to hold this kind of 
review to a minimum. In a few instances, to provide some insight without 
getting too heavily bogged down in the mathematics, I have used heuristic 
arguments to establish a desired result. 

The range of this book is intentionally rather narrow. There are many 
interesting and useful topics (conformal mapping, Sturm-Liouville theory, 
Green's functions, to name a few) which are related to those I have dis­
cussed, but which are outside the scope of the task I have in mind. 

In writing this book I have assumed that the reader has completed two 
or three semesters of calculus and has some knowledge of Schrodinger's 
equation (perhaps, from a course in modern physics or an introductory 
course in quantum mechanics). Courses at the intermediate level in classical 
mechanics and electromagnetism are also desirable, but not essential. The 
book should be accessible to a reader with this minimum preparation. A 
student who has completed the intermediate courses in an undergraduate 
physics or engineering curriculum would have a much greater appreciation 
for the subject matter treated here. 

This is all well-plowed ground and I am grateful to those who have worked 
these fields before me. There are many excellent books on mathematical 
analysis and methods of mathematical physics, and I have profited greatly 
from a number of them. Listed in the Bibliography are those that have 
been most helpful to me in writing this book. 

I should like to express my deep gratitude to Professor Gerald Speisman 
who first excited my interest in this subject a long time ago. Finally, I 
wish to thank the anonymous reviewers for very helpful comments and 
suggestions. 
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