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P r e f a c e  

T h e s e  L e c t u r e  N o t e s  w e r e  p r e p a r e d  f r o m  n o t e s  t a k e n  by  M. R a t l i f f  

a n d  K. S p a c k m a n  o f  l e c t u r e s  g i v e n  a t  t h e  U n i v e r s i t y  o f  C o l o r a d o .  

I h a v e  t r i e d  t o  p r e s e n t  a p r o o f  a s  s i m p l e  a s  p o s s i b l e  o f  W e i l ' s  

t h e o r e m  on  c u r v e s  o v e r  f i n i t e  f i e l d s .  The  n o t i o n s  o f  " s i m p l e "  o r  

"elementary" have different interpretations, but I believe that 

for a reader who is unfamiliar with algebraic geometry, perhaps 

even with algebraic functions in one variable, the simplest method 

is the one which originated with Stepanov. Hence it is this method 

which I follow. 

The length of these Notes is perhaps shocking. However, it should 

be noted that only Chapters I and III deal with Weil's theorem. 

Furthermore, the style is (I believe) leisurely, and several results 

are proved in more than one way. I start in Chapter I with the 

d simplest case, i.e., with curves y = f(x) At first I do the 

simplest subcase, i.e., the case when the field is the prime field and 

when d is coprime to the degree o~ f . This special case is now so 

easy that it could be presented to undergraduates. The general equation 

f(x,y) = 0 is taken up only in Chapter Ill, but a reader in a hurry 

could start there. The second chapter, on character sums and expo- 

nential sums, is included at such an early stage because os the 

many applications in number theory. Chapters IV, V and Vl deal with 

equations in an arbitrary number of variables. 

Possible sequences are chapters 

I by itself, or 

I, Ill for Well's theorem, or 
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I.i,III for a reader who is in a hurry, or 

I, II for character sums and exponential sums, or 

I, If, IV, or 

I, III, IV.3 and V ~ 

Originally I had planned to include Bombieri's version of the 

Stepanov method. I did include it in my lectures at the University of 

Colorado, but I first had to prove the Riemann-Roch Theorem and basic 

properties of the zeta function of a curve. A proof of these basic 

properties in the Lecture Notes would have made these unduly long, 

while their omission would have made the Bombieri version not self com- 

plete. Hence I decided after some hesitation to exclude this version 

from the Notes. 

Recently Deligne proved far reaching generalizations of Weil's 

theorem to non-singular equations in several variables, thereby con- 

firming conjectures of Well. It is to be noted, however, that Deligne's 

proof rests on an assertion of Grothendieck concerning a certain fixed 

point theorem. To the best of my knowledge, a proof of this fixed 

point theorem has not appeared in print yet. It is perhaps needless 

to say that at present there is no elementary approach to such a 

generalization of Well's theorem. But it is to be hoped that some day 

such an approach will become available, at least for those cases which 

are used most often in analytic number theory. 

November, 1975 W.M. Schmidt 



Notation 

F is the multiplicative group of a field F . 

is the algebraic closure of a field F . 

F n is the product F X ... X F , i.e., the set of n-tuples 

with x i E F (i = l,...,n) . 

I F  1 : F 2 ]  d e n o t e s  t h e  d e g r e e  o f  a f i e l d  e x t e n s i o n  F 1 ~ F 2 . 

denotes the trace and ~ the norm. 

F will denote the finite field with q elements. 
q 

p will be the characteristic~ 

is the field of rational numbers, 

R the field of reals, 

C the field of complex numbers, 

Z the ring of (rational) integers. 

denotes isomorphism of fields or groups. 

(Xl,..-,x n) 

Quite often, x,y,z.., will be elements which lie in a ground 

field or are algebraic over a ground field, X,Y,Z,... will be 

variables, i.e., will be algebraically independent over a ground field, 

and ~ , ~,... will be algebraic functions, i.e., they will be 

algebraically dependent on some of X,Y,... Thus f(XI,...,X n) 

is a polynomial, and f(xl,...,x n) is the ~value of this polynomial at 

(Xl,...,x n) �9 

F(x) or F(X) or F(X,Y) or F(X,~), or similar, will be the 

field obtained by adjoining x or X or X,Y or X,~ to a ground 

field F . Thus F(X) is the field of rational functions in a variable 

X with coefficients in F . R[X] denotes the ring of polynomials in X 

with coefficients in the ring R . 



V~ 

I f  a , b  a r e  i n  Z , we w r i t e  a l b  ( o r  a + b )  i f  a d o e s  ( o r  d o e s  

n o t )  d i v i d e  b . O c c a s i o n a l l y  we s h a l l  w r i t e  d l q - 1  i n s t e a d  o f  t h e  

m o r e  p r o p e r  n o t a t i o n  d l ( q - 1 )  . A g a i n ,  we s h a l l  w r i t e  f ( X )  l g ( X )  i f  

t h e  p o l y n o m i a l  f ( X )  d i v i d e s  g (X)  . F u r t h e r  ( f ( X ) )  ( o r  ( f ( X ) , g ( X ) )  ) 

w i l l  b e  t h e  i d e a l  g e n e r a t e d  by  f ( X )  ( o r  b y  f ( X )  a n d  g ( X ) )  

!e I denotes the number of elements of a finite set ~ Given 

sets A ~ B , the set theoretic difference is denoted by B ~ A . 
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