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Preface

In spring 1970 I gave a course in Diophantine Approximation at the

University of Colorado, which culminated in simultaneous approximation

to algebraic numbers. A limited supply of mimeographed Lecture Notes was

soon gone. The completion of these new Notes was greatly delayed by my

decision to add further material.

The present chapter on sinultaneous approximations to algebraic

numbers is much more general than the one in the original Notes. This

generality is necessary to supply a basis for the subsequent chapter on

norm form equations. There is a new last chapter on approximation by

algebraic numbers. I wish to thank all those, in particular Professor

C.L. Siegel, who have pointed out a number of mistakes in the original

Notes. I hope that not too many new mistakes have crept into these new

Notes.

The present Notes contain only a small part of the theory of Dio

phantine Approximation.. The main emphasis is on approximation to

algebraic numbers. But even here not everything is included. I follow

the approach which was initiated by Thue in 1908, and further developed

by Siegel and by Roth, but I do not include the effective results due to

Baker. Not included is approximation in p - adic fields, for which

see e.g. Schlickewei [1976, 1977], or approximation in power series

fields, for which s~e e.g., Osgood [1977] and Ratliff [19781. Totally

missing are Pisot-Vijayaraghavan Numbers, inhomogeneous approximation

and uniform distribution. For these see e.g. Cassels [1957] and Kuipers

and Niederreiter [1974]. Also excluded are Weyl Sums, nonlinear appraxi-
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mation and diophantine inequalities involving forms in many variables.

My pace is in general very leisurely and slow. This will be

especially apparent when comparing Baker's [1975] chapter on approximation

to algebraic numbers with my two separate chapters, one dealing with Roth's

Theorem on approximation to a single algebraic number, the other with

simultaneous approximation to algebraic numbers.

Possible sequences are chapters

I, II, III, for a reader who is interested in game and measure theoretic

results, or

I, II, V, for a reader who wants to study Roth's Theorem, or

I, II, IV, V, VI, VII (§ 11, 12), VIII (§ 7-10), for a general theory of

simultaneous approximation to algebraic numbers, or

I, II, IV, V, VI, VII, if the goal is norm form equations, or

I, II, VIII (§ 1-6, §ll), if the emphasis is on approximation by algebraic

numbers.

December 1979 W.M. Schmidt



Notation

A real number ~ may uniquely be written as

~ = [~] + (~}

where [~] , the integer part of ~ , is an integer, and where (~}

the fractional part of ~ , satisfies 0 ~ (~} < 1

\\~\\ = min«(S},l - (~}) is the distance from ~ to the nearest integer,

U denotes the unit interval 0 ~ ~ < 1

lRn denotes the n - dimensiona 1 real space,

En denotes Euc1idean n - space.

~'l' ... will denote vectors; so x

m
x = (xl, ... ,x ) E lR , etc.= m

n
(xl'··· ,xn ) E:R , or

Addition and multiplication of vectors by scalars is obvious.

;l' ... ';n will denote basis vectors.

AK , where A > 0 and where K is in lRn , is the 'Set of elements

A~ with ~ E K

0ij is the Kronecker Symbol.

X,Y, ... , in general will be variables, while x,y, ... will be

real, usually rational integers. But this rule is sometimes hard to

follow: In chapter IV, the symbols X,Y, ... will also be used to denote

coordinates in compound spaces.

However~ = (xl'··· ,xn )

has coordinates in an algebraic

K

~ = max(lx11, •.. ,lxnl) if

~ , where ~ = (131"" ,(3n)

is given by ~
=

number field max(I(3~1)1,.•. ,I(3~1~,.··,I(3~k)I,•.• ,I(3~k)I).

i f ' (~(1) _- H , H (2 ) , .•. , (~ (k) h· f 1 ~
~ ~ ~ ~ are t e conJugates 0 an e ements ~

(But, on p. 173, fil for a single element y has a different meaning.)
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~ is the maximum absolute value of the coefficients of a poly

nomial P

~ is the field of rationals,

lR is the field of reals,

C is the field of complex numbers.

[L : K] is the degree of a field extension Lover K

(a,b, ... ,w} denotes the set consisting of a,b, ... ,w, and

denotes a set theoretic difference.

« is the Vinogradov symbol. Thus e.g. f(~)« g(~) means that

If(~)1 :! clg(~)1 with a constant c Often this "implied" constant c

may depend on extra parameters, such as the dimension, etc.

»« , in the context f« g , means that both f« g and

g « f

o , the "little 0" , in the context f(n) = o(g(n» , means that

f(n)/g(n) tends to 0 as n ~ ~

g.c.d. denotes the greatest common divisor of integers.

Starred Theorems, such as Theorem 6A* , are not proved in these Notes.
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