Applied Mathematical Sciences

Volume 142

Editors J.E. Marsden L. Sirovich

Advisors S. Antman J.K. Hale P. Holmes T. Kambe J. Keller B.J. Matkowsky C.S. Peskin

Springer-Science+Business Media, LLC

Applied Mathematical Sciences

- 1. John: Partial Differential Equations, 4th ed.
- 2. Sirovich: Techniques of Asymptotic Analysis.
- 3. *Hale:* Theory of Functional Differential Equations, 2nd ed.
- 4. Percus: Combinatorial Methods.
- 5. von Mises/Friedrichs: Fluid Dynamics.
- 6. Freiberger/Grenander: A Short Course in Computational Probability and Statistics.
- 7. Pipkin: Lectures on Viscoelasticity Theory.
- 8. *Giacaglia:* Perturbation Methods in Non-linear Systems.
- 9. *Friedrichs:* Spectral Theory of Operators in Hilbert Space.
- 10. *Stroud:* Numerical Quadrature and Solution of Ordinary Differential Equations.
- 11. Wolovich: Linear Multivariable Systems.
- 12. Berkovitz: Optimal Control Theory.
- 13. *Bluman/Cole:* Similarity Methods for Differential Equations.
- 14. Yoshizawa: Stability Theory and the Existence of Periodic Solution and Almost Periodic Solutions.
- 15. Braun: Differential Equations and Their Applications, 3rd ed.
- 16. Lefschetz: Applications of Algebraic Topology.
- 17. Collatz/Wetterling: Optimization Problems.
- 18. *Grenander*: Pattern Synthesis: Lectures in Pattern Theory, Vol. I.
- Marsden/McCracken: Hopf Bifurcation and Its Applications.
- 20. Driver: Ordinary and Delay Differential Equations.
- 21. Courant/Friedrichs: Supersonic Flow and Shock Waves.
- 22. Rouche/Habets/Laloy: Stability Theory by Liapunov's Direct Method.
- 23. Lamperti: Stochastic Processes: A Survey of the Mathematical Theory.
- 24. Grenander: Pattern Analysis: Lectures in Pattern Theory, Vol. II.
- 25. Davies: Integral Transforms and Their Applications, 2nd ed.
- Kushner/Clark: Stochastic Approximation Methods for Constrained and Unconstrained Systems.
- 27. de Boor: A Practical Guide to Splines.
- 28. Keilson: Markov Chain Models—Rarity and Exponentiality.
- 29. de Veubeke: A Course in Elasticity.
- Śniatycki: Geometric Quantization and Quantum Mechanics.
- 31. *Reid:* Sturmian Theory for Ordinary Differential Equations.
- Meis/Markowitz: Numerical Solution of Partial Differential Equations.
- Grenander: Regular Structures: Lectures in Pattern Theory, Vol. III.

- 34. *Kevorkian/Cole:* Perturbation Methods in Applied Mathematics.
- 35. Carr: Applications of Centre Manifold Theory.
- 36. Bengtsson/Ghil/Källén: Dynamic Meteorology: Data Assimilation Methods.
- 37. *Saperstone:* Semidynamical Systems in Infinite Dimensional Spaces.
- Lichtenberg/Lieberman: Regular and Chaotic Dynamics, 2nd ed.
- 39. *Piccini/Stampacchia/Vidossich:* Ordinary Differential Equations in **R**ⁿ.
- 40. Naylor/Sell: Linear Operator Theory in Engineering and Science.
- 41. Sparrow: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors.
- Guckenheimer/Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields.
- 43. Ockendon/Taylor: Inviscid Fluid Flows.
- 44. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations.
- Glashoff/Gustafson: Linear Operations and Approximation: An Introduction to the Theoretical Analysis and Numerical Treatment of Semi-Infinite Programs.
- 46. *Wilcox:* Scattering Theory for Diffraction Gratings.
- Hale et al: An Introduction to Infinite Dimensional Dynamical Systems—Geometric Theory.
- 48. Murray: Asymptotic Analysis.
- 49. Ladyzhenskaya: The Boundary-Value Problems of Mathematical Physics.
- 50. Wilcox: Sound Propagation in Stratified Fluids.
- 51. *Golubitsky/Schaeffer:* Bifurcation and Groups in Bifurcation Theory, Vol. I.
- 52. Chipot: Variational Inequalities and Flow in Porous Media.
- Majda: Compressible Fluid Flow and System of Conservation Laws in Several Space Variables.
- 54. Wasow: Linear Turning Point Theory.
- Yosida: Operational Calculus: A Theory of Hyperfunctions.
- 56. Chang/Howes: Nonlinear Singular Perturbation Phenomena: Theory and Applications.
- 57. Reinhardt: Analysis of Approximation Methods for Differential and Integral Equations.
- 58. Dwoyer/Hussaini/Voigt (eds): Theoretical Approaches to Turbulence.
- Sanders/Verhulst: Averaging Methods in Nonlinear Dynamical Systems.
- Ghil/Childress: Topics in Geophysical Dynamics: Atmospheric Dynamics, Dynamo Theory and Climate Dynamics.

(continued following index)

Stability and Transition in Shear Flows

With 222 figures

Peter J. Schmid Applied Mathematics Department University of Washington Seattle, WA 98195-0001 USA pjs@amath.washington.edu

Editors

J.E. Marsden Control and Dynamical Systems, 107-81 California Institute of Technology Pasadena, CA 91125 USA Dan S. Henningson Department of Mechanics Royal Institute of Technology (KTH) Stockholm, S-100 44 Sweden henning@mech.kth.se

L. Sirovich Division of Applied Mathematics Brown University Providence, RI 02912 USA

Mathematics Subject Classification (2000): 34E02, 35B35, 76EXX, 7602

Library of Congress Cataloging-in-Publication Data
Schmid, Peter J.
Stability and transition in shear flows / Peter J. Schmid, Dan S. Henningson.
p. cm. — (Applied mathematical sciences ; 142)
Includes bibliographical references and index.
ISBN 978-1-4612-6564-1 ISBN 978-1-4613-0185-1 (eBook)
DOI 10.1007/978-1-4613-0185-1
1. Shear flow. 2. Stability. I. Henningson, Dan S. II. Title. III. Applied mathematical sciences (Springer-Verlag New York, Inc.) ; v. 142.
QA1 .A647 no. 142
[QA922]
510 s—dc21
[532'.051]

Printed on acid-free paper.

© 2001 Springer Science+Business Media New York Originally published by Springer-Verlag New York in 2001

Softcover reprint of the hardcover 1st edition 2001

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Science+Business Media, LLC), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Michael Koy; manufacturing supervised by Erica Bresler. Photocomposed copy prepared from the authors' T_EX files.

987654321

ISBN 978-1-4612-6564-1

SPIN 10659102

Contents

	Pre	face	xi
1	Inti	roduction and General Results	1
	1.1	Introduction	1
	1.2	Nonlinear Disturbance Equations	2
	1.3	Definition of Stability and Critical Reynolds Numbers	3
		1.3.1 Definition of Stability	3
		1.3.2 Critical Reynolds Numbers	5
		1.3.3 Spatial Evolution of Disturbances	6
	1.4	The Reynolds-Orr Equation	7
		1.4.1 Derivation of the Reynolds-Orr Equation	7
		1.4.2 The Need for Linear Growth Mechanisms	9

I Temporal Stability of Parallel Shear Flows

Line	ear Inviscid Analysis	15
2.1	Inviscid Linear Stability Equations	15
2.2	Modal Solutions	17
	2.2.1 General Results	17
	2.2.2 Dispersive Effects and Wave Packets	33
2.3	Initial Value Problem	38
	2.3.1 The Inviscid Initial Value Problem	38
	2.3.2 Laplace Transform Solution	42
	2.1 2.2	Linear Inviscid Analysis 2.1 Inviscid Linear Stability Equations 2.2 Modal Solutions 2.2.1 General Results 2.2.2 Dispersive Effects and Wave Packets 2.3 Initial Value Problem 2.3.1 The Inviscid Initial Value Problem 2.3.2 Laplace Transform Solution

		2.3.3	Solutions to the Normal Vorticity Equation	46
		2.3.4	Example: Couette Flow	48
		2.3.5	Localized Disturbances	50
3	Eige	ensolut	tions to the Viscous Problem	55
	3.1	Viscou	s Linear Stability Equations	55
		3.1.1	The Velocity-Vorticity Formulation	55
		3.1.2	The Orr-Sommerfeld and Squire Equations	56
		3.1.3	Squire's Transformation and Squire's Theorem	58
		3.1.4	Vector Modes	59
		3.1.5	Pipe Flow	61
	3.2	Spectr	ra and Eigenfunctions	64
		3.2.1	Discrete Spectrum	64
		3.2.2	Neutral Curves	71
		3.2.3	Continuous Spectrum	74
		3.2.4	Asymptotic Results	78
	3.3	Furthe	er Results on Spectra and Eigenfunctions	85
		3.3.1	Adjoint Problem and Bi-Orthogonality Condition	85
		3.3.2	Sensitivity of Eigenvalues	89
		3.3.3	Pseudo-Eigenvalues	93
		3.3.4	Bounds on Eigenvalues	94
		3.3.5	Dispersive Effects and Wave Packets	96
4	The	e Visco	ous Initial Value Problem	99
	4.1	The V	Viscous Initial Value Problem	99
		4.1.1	Motivation	99
		4.1.2	Derivation of the Disturbance Equations	102
		4.1.3	Disturbance Measure	102
	4.2	The F	Forced Squire Equation and Transient Growth	103
		4.2.1	Eigenfunction Expansion	103
		4.2.2	Blasius Boundary Layer Flow	105
	4.3	The C	Complete Solution to the Initial Value Problem	106
		4.3.1	Continuous Formulation	106
		4.3.2	Discrete Formulation	108
	4.4	Optin	nal Growth	111
		4.4.1	The Matrix Exponential	111
		4.4.2	Maximum Amplification	112
		4.4.3	Optimal Disturbances	119
		4.4.4	Reynolds Number Dependence of Optimal Growth .	120
	4.5	-	nal Response and Optimal Growth Rate	126
		4.5.1	The Forced Problem and the Resolvent	126
		4.5.2	Maximum Growth Rate	131
		4.5.3	Response to Stochastic Excitation	133
	4.6		nates of Growth	$\begin{array}{c} 139 \\ 139 \end{array}$
		4.6.1		1 90

	4.7	4.7.1	Conditions for No Growth	141 144 144 147
		$4.7.2 \\ 4.7.3$	Examples	147 149
-	NT	1.		1
5			Stability	153
	5.1	Motiva		153
		5.1.1	Introduction	153
		5.1.2	A Model Problem	154
	5.2	Nonlin	ear Initial Value Problem	155
		5.2.1	The Velocity-Vorticity Equations	155
	5.3	Weakl	y Nonlinear Expansion	160
		5.3.1	Multiple-Scale Analysis	160
		5.3.2	The Landau Equation	164
	5.4	Three-	Wave Interactions	167
		5.4.1	Resonance Conditions	167
		5.4.2	Derivation of a Dynamical System	168
		5.4.3	Triad Interactions	172
	5.5	Solutio	ons to the Nonlinear Initial Value Problem	177
		5.5.1	Formal Solutions to the Nonlinear Initial Value Prob-	
			lem	177
		5.5.2	Weakly Nonlinear Solutions and the Center Manifold	179
		5.5.3	Nonlinear Equilibrium States	180
		5.5.4	Numerical Solutions for Localized Disturbances	185
	5.6		y Theory	188
	0.0	5.6.1		188
			The Energy Stability Problem	
		5.6.2	Additional Constraints	191

II Stability of Complex Flows and Transition

6	Ten	poral Stability of Complex Flows				197
	6.1	Effect of Pressure Gradient and Crossflow			•	198
		6.1.1 Falkner-Skan (FS) Boundary Layers			•	198
		6.1.2 Falkner-Skan-Cooke (FSC) Boundary laye	rs.		•	203
	6.2	Effect of Rotation and Curvature				207
		6.2.1 Curved Channel Flow				207
		6.2.2 Rotating Channel Flow				211
		6.2.3 Combined Effect of Curvature and Rotation	on.			213
	6.3	Effect of Surface Tension				216
		6.3.1 Water Table Flow				216
		6.3.2 Energy and the Choice of Norm				218
		6.3.3 Results				221
	6.4	Stability of Unsteady Flow				223

		6.4.1	Oscillatory Flow	. 223
		6.4.2	Arbitrary Time Dependence	. 229
	6.5	Effect	of Compressibility	
		6.5.1	The Compressible Initial Value Problem	
		6.5.2	Inviscid Instabilities and Rayleigh's Criterion	
		6.5.3	Viscous Instability	
		6.5.4	Nonmodal Growth	
7	Gro	wth o	f Disturbances in Space	253
	7.1	Spatia	al Eigenvalue Analysis	. 253
		7.1.1	Introduction	
		7.1.2	Spatial Spectra	. 255
		7.1.3	Gaster's Transformation	
		7.1.4	Harmonic Point Source	. 266
	7.2	Absol	ute Instability	. 270
		7.2.1	The Concept of Absolute Instability	
		7.2.2	Briggs' Method	
		7.2.3	The Cusp Map	
		7.2.4	Stability of a Two-Dimensional Wake	
		7.2.5	Stability of Rotating Disk Flow	
	7.3		al Initial Value Problem	
		7.3.1	Primitive Variable Formulation	. 290
		7.3.2	Solution of the Spatial Initial Value Problem	
		7.3.3	The Vibrating Ribbon Problem	. 294
	7.4		arallel Effects	. 300
		7.4.1	Asymptotic Methods	. 301
		7.4.2	Parabolic Equations for Steady Disturbances	
		7.4.3	Parabolized Stability Equations (PSE)	
		7.4.4	Spatial Optimal Disturbances	
		7.4.5	Global Instability	
	7.5	Nonli	near Effects	
		7.5.1	Nonlinear Wave Interactions	
		7.5.2	Nonlinear Parabolized Stability Equations	. 346
		7.5.3	Examples	
	7.6	Distu	rbance Environment and Receptivity	
		7.6.1	Introduction	
		7.6.2	Nonlocalized and Localized Receptivity	
		7.6.3	An Adjoint Approach to Receptivity	
		7.6.4	Receptivity Using Parabolic Evolution Equations .	
8	Sec	ondar	y Instability	373
	8.1	Intro	luction	. 373
	8.2	Secon	dary Instability of Two-Dimensional Waves	
		8.2.1	Derivation of the Equations	
		8.2.2	Numerical Results	. 378

		8.2.3	Elliptical Instability	381
	8.3	Secon	dary Instability of Vortices and Streaks	383
		8.3.1	Governing Equations	383
		8.3.2	Examples of Secondary Instability of Streaks and	
			Vortices	389
	8.4	Eckha	us Instability	394
		8.4.1	Secondary Instability of Parallel Flows	394
		8.4.2	Parabolic Equations for Spatial Eckhaus Instability .	397
9	Tra	nsitior	n to Turbulence	401
	9.1	Trans	ition Scenarios and Thresholds	401
		9.1.1	Introduction	401
		9.1.2	Three Transition Scenarios	403
		9.1.3	The Most Likely Transition Scenario	411
		9.1.4	Conclusions	413
	9.2	Break	down of Two-Dimensional Waves	414
		9.2.1	The Zero Pressure Gradient Boundary Layer	414
		9.2.2	Breakdown of Mixing Layers	420
	9.3	Streak	Breakdown	425
		9.3.1	Streaks Forced by Blowing or Suction	425
		9.3.2	Freestream Turbulence	429
	9.4	Obliqu	ue Transition	436
		9.4.1	Experiments and Simulations in Blasius Flow	436
		9.4.2	Transition in a Separation Bubble	441
		9.4.3	Compressible Oblique Transition	445
	9.5		ition of Vortex-Dominated Flows	446
		9.5.1	Transition in Flows with Curvature	446
		9.5.2	Direct Numerical Simulations of Secondary Instabil-	
			ity of Crossflow Vortices	450
		9.5.3	Experimental Investigations of Breakdown of Cross-	
			flow Vortices	455
	9.6		down of Localized Disturbances	456
		9.6.1	Experimental Results for Boundary Layers	459
		9.6.2	Direct Numerical Simulations in Boundary Layers .	460
	9.7		ition Modeling	465
		9.7.1	Low-Dimensional Models of Subcritical Transition .	465
		9.7.2	Traditional Transition Prediction Models	469
		9.7.3	Transition Prediction Models Based on Nonmodal	
		0 = 1	Growth	
		9.7.4	Nonlinear Transition Modeling	474

III Appendix

A N	umerical	Issues	and	Computer	Programs	
-----	----------	--------	-----	----------	----------	--

479

	A.1	Global versus Local Methods	479
	A.2	Runge-Kutta Methods	480
	A.3	Chebyshev Expansions	483
	A.4	Infinite Domain and Continuous Spectrum	486
	A.5	Chebyshev Discretization of the Orr-Sommerfeld Equation .	487
	A.6	MATLAB Codes for Hydrodynamic Stability Calculations .	489
	A.7	Eigenvalues of Parallel Shear Flows	503
\mathbf{B}	Res	onances and Degeneracies	509
	B.1	Resonances and Degeneracies	509
	B.2	Orr-Sommerfeld-Squire Resonance	511
\mathbf{C}	Adj	oint of the Linearized Boundary Layer Equation	515
	C.1	Adjoint of the Linearized Boundary Layer Equation	515
D	Sele	cted Problems on Part I	519
	Bib	liography	529
	Inde	ex	551

Preface

The field of hydrodynamic stability has a long history, going back to Reynolds and Lord Rayleigh in the late 19th century. Because of its central role in many research efforts involving fluid flow, stability theory has grown into a mature discipline, firmly based on a large body of knowledge and a vast body of literature. The sheer size of this field has made it difficult for young researchers to access this exciting area of fluid dynamics.

For this reason, writing a book on the subject of hydrodynamic stability theory and transition is a daunting endeavor, especially as *any* book on stability theory will have to follow into the footsteps of the classical treatises by Lin (1955), Betchov & Criminale (1967), Joseph (1971), and Drazin & Reid (1981). Each of these books has marked an important development in stability theory and has laid the foundation for many researchers to advance our understanding of stability and transition in shear flows.

A task every author has to face is the choice of material to include in a book, while being fully aware of the fact that full justice cannot be done to all areas. The past two decades have seen a great deal of development in hydrodynamic stability theory. For this reason we chose to devote a substantial fraction of this book to recent developments in stability theory which, among others, include nonmodal analysis, spatial growth, adjoint techniques, parabolized stability equations, secondary instability theory and direct numerical simulations. Some more classical theories are included for completeness, but are treated in less detail, especially if they are covered elsewhere in the literature. Other topics such as, critical layer theory, advanced asymptotic methods, bifurcation and chaos theory, have been omitted altogether due to space constraints. We sincerely hope that the reader will find our choice of material interesting and stimulating. Throughout the text references are provided that will guide the interested reader to more details, different applications and various extensions, but no attempt has been made to compile an exhaustive bibliography.

The book is foremost intended for researchers and graduate students with a basic knowledge of fundamental fluid dynamics. We particularly hope it will help young researchers at the beginning of their scientific careers to quickly gain an overview as well as detailed knowledge of the recent developments in the field. Various sections of the text have been used in graduate courses on hydrodynamic stability at the University of Washington, Seattle and the Royal Institute of Technology, Stockholm, Sweden.

The book consists of an introduction and two parts. The first part (Chapters 2-5) develops the fundamental concepts underlying stability theory. Chapter 2 deals with the temporal evolution of disturbances in an inviscid fluid. The linear theory for viscous fluids is developed in Chapters 3 and 4 with Chapter 3 concentrating on a modal description and Chapter 4 introducing the nonmodal framework. In Chapter 5 we discuss finite-amplitude effects and study various nonlinear stability theories.

The second part of the book (Chapters 6-9) covers more advanced topics. In Chapter 6 we will study the influence of various physical effects (such as rotation, curvature, compressibility, etc.) on the stability behavior of parallel shear flows. Chapter 7 is devoted to spatial stability theory covering such topics as absolute stability theory, weakly nonparallel effects, parabolized stability equations, and receptivity. Secondary instability theory is treated in Chapter 8 with applications to Tollmien-Schlichting waves, streaks, and vortical flows. In Chapter 9 many of the concepts introduced in the previous chapters are used to explain the transition process from laminar to turbulent fluid motion in a variety of shear flows. This chapter introduces and analyzes different transition scenarios observed in experiments and direct numerical simulations.

The appendices provide helpful hints on numerical methods, present more detailed derivations, and suggest some practice problems.

Over the course of the past years many colleagues and friends have contributed to this book through preprints of latest results, reprints of past results, insightful comments on the manuscript and moral support.

We wish to thank Larry Sirovich and Kenny Breuer who got us started on this demanding, but rewarding, project. Their comments and encouragement are appreciated greatly. We also thank Håkan Gustavsson for his contributions to an earlier review article that served as a starting point for this book.

We are deeply indebted to Alex Bottaro for his insightful comments on all parts of the book and to Philip Drazin for his careful proofreading of the manuscript. We thank Nick Trefethen for his detailed comments and his interest, encouragement and enthusiasm. Many colleagues have generously provided comments and material from their past and current research. We especially wish to thank Henrik Alfredsson, David Ashpis, Martin Berggren, Alex Bottaro, Carlo Cossu, Bill Criminale, Jeffrey Crouch, Ardeshir Hanifi, J. Healey, Werner Koch, Rebecca Lingwood, Satish Reddy, Ulrich Rist, Michael Rogers, Jerry Swearingen, Nick Trefethen, Anatoli Tumin, and Akiva Yaglom.

A large part of the writing was done during the first author's many visits to the Department of Mechanics at the Royal Institute of Technology (KTH) in Stockholm, during the second author's visit to the Department of Applied Mathematics at the University of Washington, and during a visit to the Center for Turbulence Research at Stanford University. We would like to thank the chairs of these institutions, Arne Johansson (KTH), K.K. Tung (UW), and Parviz Moin (CTR), for their warm hospitality and support. In particular, the first author is greatly indebted to the faculty and students at KTH and will always treasure the interesting discussions, memorable activities, and Swedish hospitality. The second author gratefully acknowledges the support of the Aeronautical Research Institute of Sweden.

Finally, we wish to thank our editor, Achi Dosanjh, and the staff at Springer-Verlag for their support and patience.

Last, but certainly not least, we wish to thank our families for supporting this effort and for enduring the many sacrifices it took.

Seattle and Stockholm, July 2000

Peter Schmid Dan Henningson