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Preface 

The field of hydrodynamic stability has a long history, going back to Rey
nolds and Lord Rayleigh in the late 19th century. Because of its central role 
in many research efforts involving fluid flow, stability theory has grown into 
a mature discipline, firmly based on a large body of knowledge and a vast 
body of literature. The sheer size of this field has made it difficult for young 
researchers to access this exciting area of fluid dynamics. 

For this reason, writing a book on the subject of hydrodynamic stability 
theory and transition is a daunting endeavor, especially as any book on 
stability theory will have to follow into the footsteps of the classical treatises 
by Lin (1955), Betchov & Criminale (1967), Joseph (1971), and Drazin & 
Reid (1981). Each of these books has marked an important development 
in stability theory and has laid the foundation for many researchers to 
advance our understanding of stability and transition in shear flows. 

A task every author has to face is the choice of material to include in a 
book, while being fully aware of the fact that full justice cannot be done 
to all areas. The past two decades have seen a great deal of development 
in hydrodynamic stability theory. For this reason we chose to devote a 
substantial fraction of this book to recent developments in stability theory 
which, among others, include nonmodal analysis, spatial growth, adjoint 
techniques, parabolized stability equations, secondary instability theory 
and direct numerical simulations. Some more classical theories are included 
for completeness, but are treated in less detail, especially if they are covered 
elsewhere in the literature. Other topics such as, critical layer theory, ad
vanced asymptotic methods, bifurcation and chaos theory, have been omit
ted altogether due to space constraints. We sincerely hope that the reader 
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will find our choice of material interesting and stimulating. Throughout the 
text references are provided that will guide the interested reader to more 
details, different applications and various extensions, but no attempt has 
been made to compile an exhaustive bibliography. 

The book is foremost intended for researchers and graduate students with 
a basic knowledge of fundamental fluid dynamics. We particularly hope it 
will help young researchers at the beginning of their scientific careers to 
quickly gain an overview as well as detailed knowledge of the recent devel
opments in the field. Various sections of the text have been used in graduate 
courses on hydrodynamic stability at the University of Washington, Seattle 
and the Royal Institute of Technology, Stockholm, Sweden. 

The book consists of an introduction and two parts. The first part (Chap
ters 2-5) develops the fundamental concepts underlying stability theory. 
Chapter 2 deals with the temporal evolution of disturbances in an inviscid 
fluid. The linear theory for viscous fluids is developed in Chapters 3 and 4 
with Chapter 3 concentrating on a modal description and Chapter 4 intro
ducing the nonmodal framework. In Chapter 5 we discuss finite-amplitude 
effects and study various nonlinear stability theories. 

The second part ofthe book (Chapters 6-9) covers more advanced topics. 
In Chapter 6 we will study the influence of various physical effects (such as 
rotation, curvature, compressibility, etc.) on the stability behavior of paral
lel shear flows. Chapter 7 is devoted to spatial stability theory covering such 
topics as absolute stability theory, weakly nonparallel effects, parabolized 
stability equations, and receptivity. Secondary instability theory is treated 
in Chapter 8 with applications to Tollmien-Schlichting waves, streaks, and 
vortical flows. In Chapter 9 many of the concepts introduced in the previous 
chapters are used to explain the transition process from laminar to turbu
lent fluid motion in a variety of shear flows. This chapter introduces and 
analyzes different transition scenarios observed in experiments and direct 
numerical simulations. 

The appendices provide helpful hints on numerical methods, present 
more detailed derivations, and suggest some practice problems. 

Over the course of the past years many colleagues and friends have con
tributed to this book through preprints of latest results, reprints of past 
results, insightful comments on the manuscript and moral support. 

We wish to thank Larry Sirovich and Kenny Breuer who got us started 
on this demanding, but rewarding, project. Their comments and encour
agement are appreciated greatly. We also thank Hakan Gustavsson for his 
contributions to an earlier review article that served as a starting point for 
this book. 

We are deeply indebted to Alex Bottaro for his insightful comments on 
all parts of the book and to Philip Drazin for his careful proofreading of 
the manuscript. We thank Nick Trefethen for his detailed comments and 
his interest, encouragement and enthusiasm. 
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Many colleagues have generously provided comments and material from 
their past and current research. We especially wish to thank Henrik AI
fredsson, David Ashpis, Martin Berggren, Alex Bottaro, Carlo Cossu, Bill 
Criminale, Jeffrey Crouch, Ardeshir Hanifi, J. Healey, Werner Koch, Re
becca Lingwood, Satish Reddy, Ulrich Rist, Michael Rogers, Jerry Swearin
gen, Nick Trefethen, Anatoli Tumin, and Akiva Yaglom. 

A large part of the writing was done during the first author's many 
visits to the Department of Mechanics at the Royal Institute of Technology 
(KTH) in Stockholm, during the second author's visit to the Department 
of Applied Mathematics at the University of Washington, and during a 
visit to the Center for Turbulence Research at Stanford University. We 
would like to thank the chairs ofthese institutions, Arne Johansson (KTH), 
KK Tung (UW), and Parviz Moin (CTR), for their warm hospitality and 
support. In particular, the first author is greatly indebted to the faculty 
and students at KTH and will always treasure the interesting discussions, 
memorable activities, and Swedish hospitality. The second author gratefully 
acknowledges the support of the Aeronautical Research Institute of Sweden. 

Finally, we wish to thank our editor, Achi Dosanjh, and the staff at 
Springer-Verlag for their support and patience. 
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