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Introduction 

The purpose of this book is to give an exposition of the appli

cation of hyperfunction theory and micro local analysis to some impor

tant problems in harmonic analysis of symmetric spaces. 

The theory of hyperfunctions generalizes that of distributions 

in the sense that while distributions are linear functionals on 

'" C -functions, hyperfunctions can be thought of as linear functionals 

on the smaller space of analytic functions. For the study of partial 

differential equations with analytic coefficients this concept is 

extremely useful. Microlocal analysis is the study (via the tangent 

space) of the local properties of solutions to systems of such 

equations. 

The book consists of two parts. In the first part (Chapters 1 

and 2), which is expository, we give an introduction to hyper

functions, micro local analysis, and applications of this 

theory to the study of systems of partial differential equations with 

regular singularities. We give very few proofs. As for the main 

results (Theorems 2.3.1 and 2.3.2), we illustrate the technique of 

proof via an important example (Section 2.4). 

In the second part, we apply the results from the first part to 

symmetric spaces. Here we give full proofs of all results (with 

one exception, cf. below); except for certain standard results 

from the theory of semisimple Lie groups (stated in Chapter 3), this 

part of the book is self contained (that is, modulo Chapters 1 and 2). 

There are two main results that we prove in the second part of 

the book, concerning respectively a Riemannian symmetric space and a 

semisimple symmetric space. 

Let X be a Riemannian symmetric space of the noncompact type 

and let ID(X) be the algebra of differential operators on X in

variant under all isometries of X. The first result (Corollary 

5.4.4) states that every function on X which is an eigenfunction 

for each operator in ID(X) can be represented by a hyperfunction on 
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the boundary of X via an integral formula similar to the classical 

Poisson integral for the unit disk. This result, the proof of which 

comprises Chapters 4 and 5, was conjectured by S. He1gason (1970,[c]) 

and proved by M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, 

T. Oshima and M. Tanaka (1978, Kashiwara et al. [a]) by employing 

the techniques of microloca1 analysis to study the boundary behavior 

of the eigenfunction to ID(X). This is done by imbedding X into 

a compact analytic manifold such that the differential operators in 

ID(X) have regular singularities along the boundary of X 

(Theorem 4.3.1). The theory from the first part of the book then 

ensures that the eigenfunctions have certain ''boundary values" (or 

Cauchy data), which are hyperfunctions on the boundary. It is then 

proved that by taking the Poisson integral of one of these boundary 

values we recover the original eigenfunction on X (Theorem 5.4.2). 

However, in order for the above proof to work, the eigenvalues 

for the operators in ID(X) have to satisfy a certain regularity 

assumption (to ensure that no logarithmic terms appear in the process 

of taking the boundary values). In order to prove Helgason's con

jecture for the remaining singular eigenvalues, more refined me

thods are needed. It is for this most general statement of the con

jecture (Theorem 5.4.3) that we make an omission of proof. 

In Chapter 6 a generalization of Helgason's conjecture is 

presented. In the compactification of X (which is known as the 

maximal Satake-Furstenberg compactification) the so-called boundary 

of X is in fact only one part of the boundary. The boundary has 

in general several other "components", and it is natural to represent 

the eigenfunctions on X also as Poisson integrals of their hyper

function boundary values on these components (Theorem 6.3.3). 

One of the features of the theory of differential equations with 

regular singularities is that it enables us to derive asymptotic 

expansions of solutions in the vicinity of the regular singular points. 

We illustrate this technique by deriving asymptotic expansions of the 

spherical functions on the Riemannian symmetric space (Theorems 5.3.2 

and 6.3.4). These asymptotic expansions (though not in the form of 

Theorem 6.3.4) were originally derived by Harish-Chandra. 

The second main result, concerning a semisimple symmetric space, 

is proved in Chapters 7 and 8 by using the same technique as was 

employed in Chapter 6. Let G/H be a semisimple symmetric space 

(that is, G a semisimple connected Lie group and H a subgroup 
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which is the identity component of the set of fixed points for some 

involutive autohorphism of G). In the harmonic analysis of G/H one 

wants to determine the closed subspaces of L2(G/H) on which G acts 

regular representation (that is, the representation 

by left translations) - the so-called discrete 

irreducibly in the 

of G on L2(G/H) 

series for L2(G/H) This problem was attacked by M. Flensted-Jensen, 

who constructed a family of functions on G/H (cf. Section 8.3), 

which he conjectured to be square integrable (1979, [c]). These 

functions are eigenfunctions for the invariant differential operators 

on G/H, and in the "generic" range of the eigenvalue, he proved 

the square integrability. The conjecture (Theorem 8.3.1) was settled 

(affirmatively) by T. Oshima (1980, unpublished - cf. Oshima and 

Matsuki [b]). The proof consists of an application of the theory of 

regular singularities to derive asymptotic expansions and hence 

growth estimates for Flensted-Jensen's functions. 

The requirements on the part of the reader are as follows. For 

the hyperfunction theory some familiarity with complex functions of 

several variables is desirable. However, since this part of the book 

is expository no deep knowledge is necessary, unless the reader wants 

to consult the references for proofs. For the applications to 

symmetric spaces the reader has to be acquainted with some Lie group 

theory, as for instance is offered in the books Helgason [j] or 

Wallach [a]. See also Chapter 3 for a more detailed description of 

the necessary prerequisites. 

This book contains several new results. As for the two main 

results mentioned above, however, the contribution of the author is 

solely expository. The author's main original contributions are to be 

found in Chapter 6. Each chapter is concluded with a short section 

of notes, giving the origin of the theory described in that chapter, 

with references to the bibliography, which is in the back of the book. 

The references for the main theorems are Kashiwara and Oshima [a], 

Oshima and Sekiguchi [a], Oshima [a], Kashiwara et al. [a], Flensted

Jensen [c] and Oshima [c]. 

Notation. 

lR = field of real numbers, lR+ = {t E:R I t ~ O} 

t field of complex numbers 

Z ring of integers, Z+ = Z nlR+ 

~ set of positive integers. 
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